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You taught me the courage of stars before you left

How light carries on endlessly, even after death

With shortness of breath you explained the infinite
And how rare and beautiful it is to even exist

I couldn’t help but ask for you to say it all again

I tried to write it down, but I could never find a pen
I’d give anything to hear you say it one more time
That the universe was made just to be seen by my eyes.

— Sleeping at Last, Jupiter






Perdere tempo con il cielo, farlo di lavoro,
pagati per immaginare qualcosa che non puoi fotografare.

— Zen Circus, L’amore é una dittatura






Abstract

This thesis focuses on the development of imaging and analysis techniques to study
the dynamics of black hole accretion and jet launching. At the center of active galactic
nuclei, supermassive black holes are surrounded by disks of accreting material and
eject collimated, highly relativistic jets of plasma that extend far beyond the host
galaxy. Despite extensive observational and theoretical efforts, several fundamental
questions about these systems remain unresolved. At horizon scales, uncertainties
persist regarding the dominant accretion regime in observed sources, the physical
mechanisms responsible for jet launching, the origin of flaring events and variability,
and the measurement of specific black hole properties such as the spin. At the larger
scales of relativistic jets, we still need to understand the complex details of the plasma
fluid propagation through the jet, and its interactions with the interstellar medium.

From an experimental point of view, the answer to these questions can be re-
searched through observations of the radio emission originating from active galactic
nuclei. Because of the astronomical distances at which these objects are located, only
very long baseline interferometry (VLBI) provides the angular resolution necessary to
image the lensed emission around black holes and distinguish the details of jet for-
mation and propagation. Numerous imaging methods have been developed in recent
years to achieve robust images at super-resolution, but accretion and jet propaga-
tion are intrinsically dynamic processes, whose properties cannot be fully captured by
static imaging only. Until recently, there has been a lack of dedicated effective imag-
ing and analysis techniques capable of robustly resolving and measuring the temporal
variability of these sources at horizon or intra-jet scales. In this thesis we set out to
tackle variability studies of relativistic jets and accreting black holes in three steps of
increasing complexity, which coincide with the three main chapters of the thesis.

The first work that we present consists in the application of a novel Regularized
Maximum Likelihood (RML) imaging method to a decade of multi-epoch observations
of a parsec scale jet. The super-resolution achieved by the imaging method allowed
the measurement of the instantaneous jet expansion speed and the irregular preces-
sion of its core. However the discontinuities from one image to the next prevented
further analysis of the jet dynamics. The second work consists in the development
of a dynamic imaging pipeline capable of reconstructing time-continuous videos from
multiple repeated observations of a slowly varying source or from a single observation
of a source with intra-day variability. The method, named kine, was applied to al-
most three decades of observations of the 3C 345 relativistic jet, producing a smooth
video, from which it was possible to compute an instantaneous pixel-by-pixel map of
the plasma velocity in the jet. While the kine method proved useful for dynamic
imaging of multi-epoch observations, it was originally developed to recover a video of
the Sgr A* black hole at the galactic center, which presents significant time variability
over the course of a single observation. Therefore, the third work presented in this
thesis focuses on the validation of the kine imaging pipeline on realistic synthetic data,



simulated with the noise and the extremely sparse coverage of the horizon-scale ob-
servations of Sgr A* with the Event Horizon Telescope (EHT). A successful validation
of the method means that the imaging algorithm can be reliably applied by the EHT
Collaboration to obtain the first horizon-scale video of a black hole. In the following
paragraphs we provide a more detailed introduction to each work.

In Chapter 3, we employ the forward imaging algorithm eht-imaging to image 12
years of roughly monthly observation of the 3C 84 relativistic jet at 43 GHz. Observa-
tions were conducted with the Very Long Baseline Array (VLBA) by the BEAM-ME
monitoring program between 2010 and 2023, for a total of 121 images. Thanks to the
super-resolving power of the imaging algorithm, which reaches an effective resolution
a factor of 2-3 better compared to CLEAN, we were able to distinguish fine structures
of the jet morphology, such as the limb brightening, the twisting of the core, multiple
traveling hot spots, and the propagating edge of the jet. We measured the instan-
taneous expansion speed of the jet over time, identifying three different expansion
regimes, marked by a Fanaroff-Riley I (FR I) to FR II morphological transition, a hot
spot frustration phase, and an opposite FR II to FR I transition. For every epoch,
we fitted the shape of the two jet limbs, from which we recovered the winding jet axis
and the projected jet launching direction. Tracking the latter over time we found an
irregular variation of the jet core orientation. Overall the results of the work confirms
previous studies of the morphological transition undergone by 3C 84 adding details
regarding the transition and the hot spot frustration. More importantly, the analysis
provided quantitative instantaneous measurements of the jet’s expansion speed and
irregular precession over a decade-long timescale.

In Chapter 4, we present kine, a newly developed video reconstruction algorithm
for VLBI observations. The method is based on a neural representation, which is able
to process simultaneously all observations available, while learning and leveraging the
spatio-temporal correlations existent in the data in full polarization. We applied kine
to 27 years of 15 GHz VLBA observations of the 3C 345 blazar from the MOJAVE
program, obtaining a full polarization video with resolution and dynamic range sig-
nificantly greater than what is achievable with frame-by-frames imaging using RML
methods or other super-resolving methods. The total intensity video shows a highly
variable jet that exhibits non-periodic changes in its launching direction. The po-
larization field structure indicates the presence of an evolving helical magnetic field
threading the jet. The continuity and resolution of the video enabled the recovery of
the variable projected velocity field of the jet plasma, using an optical flow method,
in contrast to previous kinematic studies which could only measure the pattern speed
of broad components through Gaussian model fitting. We find that the speed of the
bright components traveling through the jet is of the same order of the average plasma
speed, which indicates that the local brightness increases are not moving shocks, as
previously proposed, but more likely regions with increased emissivity in a turbulent
flow.

In Chapter 5, we present an extended version of the kine imaging method, devel-
oped to address the specific challenges posed by EHT observations of the supermassive
black hole Sgr A*. The imaging pipeline is validated on an extensive suite of synthetic
data generated after EHT observations of Sgr A* on 2017 April 11, with the aim
of assessing kine’s ability to reconstruct the ground-truth dynamics of the models
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with the extremely sparse coverage of EHT observations. The synthetic data were
generated from static and dynamic geometric models, as well as more complex and
realistic general-relativistic magneto-hydrodynamic black hole simulations. Realistic
noise was introduced in the data, including thermal noise, gain corruption and inter-
stellar scattering. kine passes all the validation tests successfully, proving its ability
to correctly reconstruct different morphologies in both total intensity and polariza-
tion, and recover a wide range of possible motion and variability. The reconstructions
also recover important physical quantities, such as the speed of orbiting features, the
brightness position angle of the ring shadow, and the linear polarization orientation.
This extensive validation of the imaging method is part of a larger effort by the EHT
Collaboration to recover a video of the lensed emission surrounding Sgr A*. Given the
successful validation, kine is the main pipeline that is being used to reconstruct the
first video of a supermassive black hole.
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Resumen

Esta tesis se centra en el desarrollo de técnicas de imagen y andalisis para estudiar
la dinamica de la acrecién de agujeros negros y el lanzamiento de chorros relativistas.
En el centro de los niicleos activos de galaxia, los agujeros negros supermasivos estan
rodeados por discos de material en acrecion y eyectan chorros de plasma colimados y
altamente relativistas que se extienden mucho mas alla de la galaxia que los origina.
A pesar de los grandes esfuerzos teéricos y observacionales, atin quedan por resolver
varias cuestiones fundamentales sobre estos sistemas. En la escala del horizonte de
sucesos, persisten incertidumbres sobre el régimen de acrecién dominante en las fuentes
observadas, los mecanismos fisicos responsables del lanzamiento de chorros, el origen
de los fenémenos de flare y la variabilidad, y la mediciéon de propiedades especificas
de los agujeros negros como el espin. En la escala de los chorros relativistas, atn
necesitamos comprender los detalles de la propagacién del plasma a través del chorro
y sus interacciones con el medio interestelar.

Desde un punto de vista experimental, la respuesta a estas preguntas puede inves-
tigarse mediante observaciones de la emision de radio procedente de niicleos activos
de galaxia. Debido a las distancias astronémicas a las que se encuentran estos objetos,
sélo la interferometria de muy larga linea de base (VLBI) proporciona la resolucién
angular necesaria para obtener imagenes de la emisiéon curvada alrededor de los agu-
jeros negros y distinguir los detalles de la formacién y propagacién de los chorros. En
los tltimos afios se han desarrollado numerosos métodos de obtencién de imégenes
para conseguir imagenes robustas con superresolucién. Sin embargo la acrecién y la
propagacién de chorros son procesos intrinsecamente dindmicos, cuyas propiedades
no pueden captarse por completo sélo con imagenes estaticas. Hasta hace poco, se
carecia de técnicas eficaces de imagen y analisis capaces de resolver y medir con solidez
la variabilidad temporal de estas fuentes a escalas del horizonte o intrachorro. En esta
tesis nos proponemos abordar el estudio de variabilidad de los chorros relativistas y
los agujeros negros en acrecion en tres pasos de complejidad creciente, que coinciden
con los tres capitulos principales de la tesis.

En el primer trabajo que presentamos, aplicamos un novedoso método de imagen
basado en probabilidad méxima regularizada (RML, por su siglas en inglés) para
obtener imagenes de un chorro a escala de un parsec, a partir de datos tomados a lo
largo de una década. La superresolucién alcanzada por el método de imagen permitié
medir la velocidad de expansion instantanea del chorro y la precesiéon irregular de su
nucleo. Sin embargo, las discontinuidades entre una imagen y la siguiente impidieron
un analisis méas profundo de la dindamica del chorro. El segundo trabajo consiste en el
desarrollo de un algoritmo capaz de reconstruir videos continuos en el tiempo a partir
de multiples observaciones de una fuente que varia lentamente o a partir de una tinica
observacion de una fuente con variabilidad mas rapida que el tiempo de observacion.
El método, denominado kine, se aplicé a casi tres décadas de observaciones del chorro
relativista 3C 345, produciendo un video continuo, a partir del cual fue posible calcular



un mapa instantaneo pixel a pixel de la velocidad del plasma en el chorro. Aunque el
método kine resulto 1til para la obtenciéon de imagenes dindmicas de observaciones
multi-epoca, se desarrolld originalmente para reconstruir un video del agujero negro
Sgr A* en el centro galdctico, que presenta una variabilidad temporal significativa en
el transcurso de una unica observacion. Finalmente, el tercer trabajo presentado en
esta tesis se centra en la validacién del algoritmo kine con datos sintéticos realistas,
simulados con el ruido y la cobertura extremadamente escaso de las observaciones a
escalas del horizonte de sucesos de SgrA* con el Event Horizon Telescope (EHT).
La validacién con éxito del método significa que el algoritmo puede ser aplicado con
fiabilidad por la Colaboracién EHT para obtener el primer video a escalas del horizonte
de sucesos de un agujero negro. En los parrafos siguientes ofrecemos una introducciéon
mas detallada de cada trabajo.

En el Capitulo 3, empleamos el algoritmo eht-imaging para obtener imagenes de
12 afios de observacion aproximadamente mensual del chorro relativista 3C84 a 43
GHz. Las observaciones se llevaron a cabo con el Very Long Baseline Array (VLBA)
por el programa de monitorizado BEAM-ME entre 2010 y 2023, resultando en un to-
tal de 121 imagenes. Gracias al poder de superresolucién del algoritmo, que alcanza
una resolucion efectiva un factor de 2-3 mejor en comparacion con CLEAN, pudi-
mos distinguir estructuras con mas detalle de la morfologia del chorro, como el brillo
del borde, la torsién del ntcleo, multiples puntos brillantes itinerantes y el borde de
propagacion del chorro. Medimos la velocidad de expansién instantanea del chorro a
lo largo del tiempo, identificando tres regimenes de expansién diferentes, marcados por
una transicion morfolégica de Fanaroff-Riley I (FR I) a FR II, una fase de frustracién
del punto caliente, y una transiciéon opuesta de FR II a FR 1. Para cada época, ajus-
tamos la forma de las dos extremidades del chorro, a partir de las cuales recuperamos
el eje sinuoso del chorro y la direcciéon de lanzamiento del chorro proyectada sobre el
plano del cielo. Al realizar un seguimiento de esta tltima a lo largo del tiempo, ob-
servamos una variacién irregular de la orientacion del nicleo del chorro. En conjunto,
los resultados del trabajo confirman estudios anteriores sobre la transicién morfolégica
experimentada por 3C 84 , anadiendo detalles sobre la transicién y la frustraciéon del
punto brillante. Ademds queremos destacar que este andlisis proporcioné medidas
cuantitativas instantaneas de la velocidad de expansion del chorro y de su precesion
irregular a lo largo de una década.

En el Capitulo 4, presentamos kine, un algoritmo de reconstruccién de video que
hemos desarrollado para observaciones VLBI. El método se basa en una representacion
neuronal, que es capaz de procesar simultaneamente todas las observaciones disponibles,
a la vez que aprende y aprovecha las correlaciones espacio-temporales existentes en los
datos en polarizacién completa. Hemos aplicado kine a 27 anos de observaciones con
el VLBA a 15 GHz del blazar 3C 345 dentro del programa MOJAVE, obteniendo un
video en polarizaciéon completa con una resolucién y un rango dindmico significativa-
mente superiores a los que se pueden conseguir con imagenes individuales obtenidas
con métodos RML u otros métodos capaces de superresoluciéon. El video en intensidad
total muestra un chorro altamente variable que exhibe cambios no periédicos en su
direccién de lanzamiento. La estructura del campo de polarizacién indica la presencia
de un campo magnético helicoidal en evolucién que enhebra el chorro. La continuidad
y resolucién del video han permitido recuperar el campo de velocidad instantanea
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del plasma del chorro, instantenea, proyectada sobre el plano del cielo, utilizando un
método de flujo 6ptico. Esto se contrapone a estudios cineméticos previos que sélo
podian medir la velocidad del patrén de ciertas componentes mediante el ajuste de
modelos Gaussianos. Encontramos que la velocidad de las componentes brillantes que
viajan a través del chorro es del mismo orden que la velocidad media del plasma, lo
que indica que los aumentos locales de brillo no son choques en movimiento, como se
habia propuesto anteriormente, sino mas bien regiones con mayor emisividad en un
flujo turbulento.

En el Capitulo 5, presentamos una versién ampliada del algoritmo de reconstruccién
de video kine, desarrollado para abordar los retos especificos planteados por las ob-
servaciones del EHT del agujero negro supermasivo Sgr A*. La pipeline se valida en
un amplio conjunto de datos sintéticos generados siguiendo las observaciones del EHT
de Sgr A* el 11 de abril de 2017, con el objetivo de evaluar la capacidad de kine para
reconstruir la dinamica real de los modelos con el cubrimiento extremadamente escaso
de las observaciones del EHT. Los datos sintéticos se generaron a partir de modelos
geométricos estaticos y dindmicos, asi como de simulaciones magnetohidrodinamicas
en relatividad general de agujeros negros més complejas y realistas. Se introdujeron
condiciones de ruido realistas en los datos, incluyendo ruido térmico, ganancias en
amplitud y en fase y scatteringinterestelar. kine supera con éxito todas las prue-
bas de validacién, demostrando su capacidad de reconstruir correctamente diferentes
morfologias tanto en intensidad total como en polarizacién, y recuperar una amplia
gama de posibles dindmicas y variabilidad. Las reconstrucciones también recuperan
importantes cantitades fisicas, como la velocidad de los ondas espirales y plasmoides,
el angulo de posiciéon del plasma que rodea el horizonte de sucesos y la orientacion
de la polarizacién lineal. Esta extensa validacion del algoritmo forma parte de un
esfuerzo mayor de la Colaboracién EHT para reconstruir un video de la emisién que
rodea a Sgr A*. Dado el éxito de la validacién, kine es el algoritmo principal que se
estd utilizando para reconstruir el primer video de un agujero negro supermasivo.
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Introduction

1.1 Supermassive black holes

In this section, we present both the theoretical foundations and observational evi-
dence related to astrophysical black holes. Section 1.1.1 provides an overview of the
fundamental concepts and definitions of black holes as predicted by General Relativ-
ity, following and adapting Carroll (2019). Section 1.1.2 discusses the astrophysical
processes responsible for black hole formation, along with the current experimental
evidence and direct observations supporting their existence.

1.1.1 The Schwarzschild and Kerr metrics

General Relativity (GR) is the theory that describes gravitation and, together with
the Standard Model for particle physics, is one of the two major theories that describe
the laws of the physical world. In GR, gravity is not described as a force, but rather
it arises as a consequence of the spacetime curvature caused by presence of mass and
energy. The spacetime manifold is described by the metric tensor g,., while energy
and matter are represented in the stress-energy tensor T),,. General Relativity relates
these two tensors through Einstein’s field equations:
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where the Ricci curvature tensor R, and and its trace, the Ricci scalar R, are func-
tions of the metric tensor and its derivatives and they contain information about the
spacetime curvature. The other terms appearing in the equations are the gravitational
constant G and the speed of light c. For a spherically symmetric and static spacetime,
Einstein’s field equations are solved in vacuum (7}, = 0) by the Schwarzschild metric:

2GM 2GM\
ds* == (1 - gr ) cdt* (1 - g?’ ) dr® +r2d6* + r?sin? 0dp* ,  (1.2)

written here is spherical coordinates (t,r, 6, ¢), which describes the spacetime outside
a spherical object of mass M.



At a radius Ry = 2GM/c?, denominated the Schwarzschild radius, the met-
ric presents a coordinate singularity, where its ¢ component vanishes and the rr
component diverges. This is not a physical singularity because it can be elimi-
nated by a change of coordinates, for example employing Eddington—Finkelstein or
Kruskal-Szekeres coordinates. However, by choosing the right set of coordinates it
can be demonstrated that inside the Schwarzschild radius, all future-directed space-
time trajectories proceed in the direction of diminishing radius. This means that
any particle located inside, including photons, can’t help but fall towards the central
mass. A surface like the r = R hypersurface, past which particles can never escape
to infinity, is called an event horizon. In the case of celestial bodies such as stars or
planets, the Schwarzschild radius is located inside the object, where the spacetime is
not vacuum and therefore the Schwarzschild metric doesn’t hold and no event horizon
arises. However, astrophysical events such as the collapse of high-mass star can lead
to a compression of the object’s mass inside Ry, leading to the formation of an event
horizon. Such as object is called a black hole (BH).

In addition to the event horizon, a Schwarzschild black hole is characterized by
the presence of a singularity at » = 0 where the spacetime curvature becomes infinite.
This is indeed a physical singularity because, not only metric terms, but also physically
meaningful quantities such as the Ricci scalar diverge. General Relativity is not able to
describe what happens at a singularity. This is an important long-standing theoretical
problem, but from an experimental perspective it doesn’t represent an issue because
nothing that is inside an black hole event horizon can be observed at an external point
of view and, according to the weak cosmic censorship conjecture, singularities cannot
appear outside of event horizons (Penrose 1965).

Differently from Newtonian gravity, where massless particles such as photons fol-
low straight trajectories, in GR, photons follow geodesic trajectories that may bend
according to the spacetime curvature, an effect called gravitational lensing. An object
described by a Schwarzschild metric allows bound geodesic orbits for both massive and
massless particles. For massless particles such as photons, an unstable circular orbit
exists at a radius of R,s = ?’CC;—ZM, which is located outside the event horizon. A photon
with the right direction of the angular momentum may orbit endlessly around this
orbit, but any small deviation may cause the photon to either escape towards infinity
or fall towards the event horizon. The sphere defined by r = R, is called the photon
sphere. Light emitted inside the photon sphere but outside of the horizon may escape
to infinity depending on its direction, while any light crossing the photon sphere from
outside will inevitably fall into the event horizon.

If the requirement of spherical symmetry is relaxed into axial symmetry and we
consider stationary instead of static metrics, the most general solution to Einstein’s
field equations is the Kerr metric:
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with:

a:=J/Mc,
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which is written here in elliptical (Boyer-Lindquist) coordinates. This metric describes
a rotating black hole, parametrized by its mass M and angular momentum J (or
specific angular momentum a) and reduces to the Schwarzschild metric for a — 0. The
event horizon of the Kerr black hole is the surface for which A = 0, which happens
at 1+ = GM/c* + \/G2M?/c* — a?. This means that the Kerr black holes has two
event horizons at r and r—. When an infalling object crosses the outer horizon it is
forced to move towards decreasing radii, similarly to the Schwarzschild case. Inside
the inner horizon this is reversed, and an object at r < r_ can move towards increasing
r, causing a possible accumulation of matter around the inner horizon. A singularity
also arises in the Kerr black hole at p = 0, which happen when r = 0 and ¢ = 0. The
effect of the black hole rotation on the singularity is thus to stretch the singularity
point into a disk.

Another important difference with respect to the static black hole is the presence
of a non-null metric cross term g;4 between the time coordinate and a spatial one.
This results in the phenomenon of frame dragging, which means that inertial frames
are not stationary but they rotate with respect to an observer at infinity. Free falling
particles with initial null angular momentum will begin to rotate along with the black
hole, with angular speed increasing as the black hole approaches. It can be proved
that, at the surface defined by
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photons emitted tangentially in the opposite direction of the black hole rotation will
have null angular velocity, while inside this surface they will nonetheless move in the
same direction of the black hole. This surface is called the stationary limit surface,
while the region enclosed between it and the outer horizon is called the ergosphere
(Figure 1.1). Particles inside the ergosphere can’t help but be dragged along with
the rotating spacetime, but don’t necessary fall inside the event horizon, they are
instead able to exit the ergosphere depending on their energy and direction. This
property leads to a mechanism named Penrose process, which enables the extraction
of rotational energy from a black hole. We consider the case of an object that enters
the ergosphere with positive energy E and then separates in two parts, for example
a particle that decays in two other particles. Because of the frame dragging, one of
the two separated particles, depending on its angular momentum, may have negative
energy E; < 0 and fall towards the black hole. Because of the conservations of energy
the other particle must have an energy Fs = E—F; > E, and depending on its angular
momentum may exit the ergosphere with more energy than the initial particle. The
net energy gain comes at the expense of the black hole’s rotational energy, effectively
slowing it down. The Penrose process is a powerful energy extraction mechanism that
shows how rotating black holes may accelerate particles that travel in the proximity
of its ergosphere.
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Figure 1.1: Kerr black hole. Vertical axial section of the Kerr black hole spacetime in
Boyer-Lindquist coordinates. Figure from Carroll (2019).

1.1.2 Supermassive black hole observations

In the previous section we have treated black holes as mathematical metric solutions
to the Einstein’s field equation of General Relativity. Here we will discuss how black
holes may arise in realistic astrophysical processes, what experimental proof we have
of their existence and how we can observe them.

The major mechanism that can lead to the formation of a black hole is stellar
collapse Figure 1.2. When a star exhausts the fuel for nuclear fusion, without the out-
ward pressure originated by nuclear reactions, the star collapses under it own gravity
forming first a neutron star. If the neutron-star mass is higher than the Oppenheimer-
Volkoff limit, it will continue to collapse until all the mass is contained within the
Schwarzshild radius, giving origin to a black hole. Black holes may also originate in
the merger of two compact objects like for a pair of neutron stars. The black holes
that originate from the collapse or merging of compact objects are called stellar-size
black holes and they have masses up to 103> M. Another possible mechanism for
black hole formation is the direct collapse of gas clouds in the early universe, without
fragmentation into stars. The mechanism is believe to form intermediate-size black
holes, with masses of 10* — 10° M. Once a black hole is formed, it may gain mass
by merging with other black holes, attract mass from a companion star or accrete
nearby interstellar gas and stars. A combination of these mechanisms may lead to the
formation of supermassive black holes (SMBH), which have masses of 106 — 109 M.
Regardless of the specific mechanism that leads to black hole formation, the initial
material typically possesses nonzero angular momentum. Due to the conservation of
angular momentum during collapse, this generally results in the formation of a Kerr
black hole rather than a Schwarzschild one. Consequently, the Kerr metric is widely
considered to provide an accurate description of astrophysical black holes. Addition-
ally, as matter accretes into black holes, especially in the case of supermassive ones,
it tends to settle in a rotating accretion disk, which gradually transfers additional
angular momentum to the black hole.

Black holes may form by different mechanisms and from different initial compo-
nents, but once the horizon is formed and the black hole reaches a stationary state, no
information about the initial matter distribution or formation mechanism is accessible
to an external observer. This is known as the no-hair theorem and it states that station-
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Figure 1.2: Stellar collapse into a black hole. The diagram from Penrose (1965) shows
how a Schwarzschild event horizon and singularity arise as a consequence of the collapse of
a spherical object. The time coordinate in on the vertical axis, while 2D spatial coordinates
are on the horizontal plane. In 2+1 dimensions the event horizon is an infinite cylinder, while
the singularity is a timelike infinite straight line.

ary, asymptotically flat black hole solutions to general relativity are fully characterized
by the parameters of mass and angular momentum. Therefore, a black hole spacetime
can be described only by the Schwarzschild or Kerr metric'. All other details—such as
the composition, shape, or multipole moments of the collapsing matter—are radiated
away during the formation process via gravitational and electromagnetic radiation.
This means that the only black hole parameters that can be measured are its mass
and spin.

Today there are various experimental evidences of the existence of black holes. The
first black holes were detected by observing a star orbiting around an invisible binary
companion or multiple stars orbiting around an invisible central object.

In 1974, Sgr A*, a highly compact, very bright radio object, was discovered within
Sagittarius A (SgrA), at the very center of the Galactic Center region (Balick and
Brown 1974). In the 1990s and early 2000s, Ghez et al. (2008) and Gillessen et al.
2009, tracked stellar orbits around Sgr A* through near-infrared observations. They

1Here we neglect the Reissner-Nordstrém and Kerr—Newman metrics, which arise from coupling
GR with electromagnetism. In fact, it is physically unrealistic that an astrophysical black hole may
maintain a stable electric or magnetic charge, so these cases are not relevant to the scope of the thesis.



Figure 1.3: Black hole shadow. (Left) Null geodesics in the equatorial plane of a
Schwarzschild black hole, that reach an observer located to the right, at infinity. Gray
geodesics originate inside the photon sphere and have shorter light paths, resulting in a dim-
mer observed emission compared to the red geodesics, whose light paths are increased by the
strong lensing. White geodesics undergo weaker lensing than the red ones, so their brightness
is not increased as much as the red ones. Grey path correspond to the black hole shadow,
red ones to the photon ring and white ones to the extended emission. Figure adapted from
Bronzwaer and Falcke (2021). (Right) Tridimensional representation of the lensed emission
around a black holes that results in the black hole shadow and the bright photon ring. Figure
adapted from a video produced by the Center for Astrophysics, Harvard & Smithsonian.

observed that the stars followed Keplerian orbits around an invisible central object,
whose mass was estimated to be 4 million solar masses. The most likely interpretation
of such a compact object, was for it to be a black hole. Another experimental evidence
of black holes is the detection of gravitational waves created during the merging of
compact objects (LIGO and Collaborations 2016). The existence of black holes is
also supported by observations of Active Galactic Nuclei (AGN). AGN are compact,
highly luminous galaxy centers, emitting across the whole electromagnetic spectrum,
with luminosity so high that it can outshine the whole host galaxy. Such a powerful
source of energy can only be provided by supermassive black holes and it is in fact
believed that supermassive black holes are present at the center of all galaxies, with
some of them producing AGN emission. A more in depth introduction to AGN is
presented in section 1.2.1.

However, all of these measurements are indirect observations of black holes. The
first direct observation was achieved by the Event Horizon Telescope Collaboration
(EHTC), which obtained radio images of the supermassive black hole shadows of
M 87*, in the homonymous giant elliptical galaxy, and Sgr A*  at the center of the
Milky Way (EHTC 2019a; EHTC 2022a). The black hole shadow is a distinctive
observational feature that emerges when emitting material is present near the event
horizon, such as in the case of an accretion disk surrounding a supermassive black
hole. For the shadow to be observable, the emitting region must also be optically
thin, which is the case for both Sgr A* and M 87. More specifically, as depicted in
Figure 1.3, the BH shadow is the lensed projection of the black hole’s photon sphere
on the observer’s image plane (Falcke et al. 2000; Bronzwaer and Falcke 2021). This
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Figure 1.4: M 87* and Sgr A* EHT images. Horizon scale polarized images of the black
hole shadows in M 87* and Sgr A* from 2017 EHT observations. The images display the total
intensity emission with the linear polarimetric emission overplotted as field lines. Figure from
the EHT Collaboration outreach material.

feature appears because most of the emission that originates inside the photon sphere
is lensed into the black hole horizon, while most of the light emitted just outside of
it is strongly lensed around the black hole, resulting in a ring-like shape in the image
plane. Light geodesics that are warped around the black hole for more than half of
a full rotation converge into a thin bright ring in the image plane, which is called
the photon ring. The shape of the shadow and the surrounding emission depends
on the spacetime metric and black hole orientation and on the characteristics of the
accreting flow, meaning that observations of BH shadows can set constrains on both
astrophysical processes and General Relativity in the strong gravity regime.

In 2017, the EHT observed the strong radio sources in M 87 and Sgr A with Very
Long Baseline Interferometry (VLBI) observations (see section 2.1) and obtained hori-
zon scale images of two supermassive black holes in both total intensity and linear
polarization (Figure 1.4). In addition to being the first direct evidence of supermas-
sive black holes, by demonstrating the existence of an event horizon and testing GR
predictions in the strong gravity regime, these images led to numerous other scientific
results. From the size of the shadows it was possible to measure the black hole masses,
and for M 87*, the asymmetry of the ring also allowed to determine the spin direction.
Both images were compared to extensive suites of General Relativistic Magneto-Hydro-
Dynamic (GRMHD) simulations, leading to constrains on the simulation parameters
compatible with the images. In both cases, observations strongly favor models with
prograde spin and with a magnetically arrested accretion disk, i.e. a strong ordered
magnetic field connecting the disk to the jet. The images also allowed to exclude many
alternative scenarios explaining the emission in these radio source and reject some al-
ternative models to Kerr black holes, such as black holes predicted by GR coupled with
additional fields and black hole mimickers, which are horizon-less compact objects.

Black holes, however, display dynamic behaviors that are difficult to observe and
measure from individual “snapshot” images. A time-resolved video of a black hole
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Figure 1.5: Example of AGN jets. (Left) Multifrequancy image of the Centaurus A galaxy
with its relativistic jets. Credit: ESO/WFI (optical, in gray); MPIfR/ESO/APEX/Weif} et
al. 2008 (submillimetre, in blue); NASA /CXC/CfA /Kraft et al. 2002 (X-ray, in blue). (Right)
Jets of the Cygnus A radio galaxy at 4.9 GHz (Perley et al. 1984).

shadow, by contrast, would offer a powerful tool to probe the dynamics of the accretion
flow. It would enable the measurement of the direction and speed of the plasma
in the accretion disk (Conroy et al. 2023), as well as the orientation and evolution
of the magnetic fields threading the black hole. These measurements could lead to
tighter constraints on parameters such as the spin and orientation of the black hole,
a better understanding of the jet launching mechanism, and to the identification of
the accretion model and the role of magnetic fields. Additionally, the shape and size
of the photon ring is completely determined by the spacetime metric and remains
constant in time, while the projection of the lensed extended emission depends on the
turbulent, variable plasma in the accretion flow. A video of the BH evolution can help
disentangle the effects of the spacetime metric from those of the accretion process, by
discriminating the persistent static emission from the variable one. Furthermore, a
video of the black hole shadow would also allow to better understand variability in the
emission originating around supermassive black holes, which results in flares observed
at multiple wavelength from radio to X-rays (e.g. Wielgus et al. 2022).

The timescale over which the emission around a supermassive black hole shows
variability depends on the black hole mass, which sets the period of the matter orbiting
in the proximity of the horizon. The measured mass of M 87* is ~ 6x10° My, (EHTC
2019f), resulting in a variability timescale from a few days to a week, while for Sgr A*,
whose mass is ~ 4x10% Mg (Gravity Collaboration 2023), the variability timescale
ranges from a few minutes to tens of minutes. The strategy adopted to observe a video
of the black hole may change significantly depending on the variability timescale. In
the case of M 87*, the EHT Collaboration is planning a multi-day observing campaign
that will be conducted in 2026. Obtaining a video of Sgr A* is more complicated and
requires the development of “dynamic” imaging algorithms, capable of recovering intra-
day variability from instantaneous observations, rather than the full day observations
(see section 2.1.5). One of the objectives of this thesis was to develop an effective
dynamic imaging method for observations of the Sgr A* black hole. The method is
presented, validated, and applied in Chapter 4 and Chapter 5 and it is currently being
applied to image the first video of a supermassive black hole.
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Figure 1.6: Fanaroff-Riley class I and II. Morphologies of the two FR classes of relativistic
jet. Credit: E. Alexander.

1.2 Active galactic nuclei and relativistic jets

In this section, we describe the early observations and the proposed model of active
galactic nuclei (section 1.2.1). We also present blazar jet observations, and describe
accretion, jet launching mechanisms, and jet propagation (section 1.2.2).

1.2.1 Active galactic nuclei: observations and unified model

Active galactic nuclei (AGN) are bright and energetic regions located at the center
of some massive galaxies. They emit across the whole electromagnetic spectrum with
extremely high luminosities (10%° to 10%® erg/s), often outshining the host galaxy.
AGN emission cannot be attributed to stellar activity but is rather the consequence
of the accretion of gas and dust into a supermassive black hole. The first signatures of
AGN were detected in 1943 by Seyfert, who observed a class of galaxies (now known as
Seyfert galaxies) with luminous nuclei and strong broad emission lines (Seyfert 1943).
The following decades saw the rise of the recently born field of radio astronomy (Jansky
1933; Reber 1940) with the development of the aperture synthesis technique and the
first interferometers (McCready et al. 1947; Ryle 1962). This led to the discovery of the
radio galaxies Cygnus A (Jennison and Das Gupta 1953; Baade and Minkowski 1954;
Ryle et al. 1965) and Centaurus A (Bolton et al. 1949), with distinctive large-scale radio
lobes extending far outside their optical counterparts (Figure 1.5). This indicated the
presence of powerful non-thermal processes capable of emitting collimated jets able to
reach extragalactic scales.

The first quasar, 3C 273, was discovered in 1963 (Hazard et al. 1963; Schmidt 1963),
soon followed by the identification of many others (e.g. Matthews and Sandage 1963).
In early observations, quasars appeared as star-like in optical wavelengths but also
exhibited strong radio emission. Spectral redshifts indicated that they were located
at intergalactic distances, leading to the discovery of compact objects capable of out-
shining their host galaxies. In the following years, a wide range of AGN were observed
and categorized accordingly to their luminosity and spectral properties. In addition to
quasars, this included Seyfert I and Seyfert II galaxies, which are nearby radio-quiet
AGN with strong spectral lines, blazars, that are AGN whose jets are pointing almost
along the line of sight, and radio galaxies, which emit strong radio emission from the
pair of large jets and lobes. Radio galaxies are also classified into Fanaroff-Riley I
and Fanaroff-Riley II, based on the morphology and brightness distribution of the
jets(Fanaroff and Riley 1974). FR T galaxies are brightest near the core, with jets that
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Figure 1.7: The unified model of AGN. Different classes of AGN are interpreted as
referring to the same kind of object observed under different viewing angles. In addition to
the viewing angle AGN are classified according to the emitted power (low or high) and the
amount of radio emission (radio-loud or radio quiet). Image from Beckmann and Shrader
(2012).

progressively fade and become diffuse as they move outwards, while FR 2 galaxies
present powerful, collimated jets that end in bright radio lobes (Figure 1.6).

In the 1990s, unified models were proposed to reconcile different AGN classes into
the same astrophysical object (Antonucci 1993; Urry and Padovani 1995). According
to the models, the differences in the properties of AGN classes arise only from the power
of the nucleus and from orientation and obscuration effects. As shown in Figure 1.7,
an AGN is composed by a central supermassive black hole surrounded by a disk of
infalling gas and dust. As the material orbits in the accretion disk, it heats up and
emits radiation at high frequencies (UV and X-rays). Irregular clouds of gas are
located above and below the disk. The inner clouds move at high speeds and emit
broad spectral lines because of Doppler effects, while the outer clouds moving a lower
speeds emit narrow spectral lines. Surrounding this system, in axis with the disk,
is a thick torus of dust which, depending on the observing angle, may obscure the
inner regions of the AGN. Some AGN also emit collimated, highly relativistic jets of
plasma accelerated by strong magnetic fields in the vicinity of the black hole. If the
orientation of the jets is close to the line of sight, like in the case of blazars, Doppler
boosting may cause the receding jet to appear significantly dimmer, so that only one
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Figure 1.8: MAD and SANE accretion models. Simulations of different black hole
accretion models. In MAD models the disk magnetic field is strong and coherent while in
SANE models it is weak and turbulent. Figure adapted from O’ Riordan et al. (2018).

jet is observed.

1.2.2 Accretion models and relativistic jets

Current theoretical models of black hole accretion propose two distinct scenarios, dif-
fering in the dynamic role of magnetic fields (Figure 1.8). In the magnetically arrested
disk (MAD) model, the accreting gas drags in a strong magnetic field toward the black
hole. As the field accumulates, it eventually becomes strong enough to arrest the in-
flow of matter (Narayan et al. 2003). MAD systems are highly efficient at launching
powerful relativistic jets. In contrast, the standard and normal evolution (SANE)
model involves accretion with relatively weak magnetic fields, insufficient to disrupt
the inflow. This results in a more disordered, chaotic magnetic field within the disk.
While relativistic jets can still form in SANE systems, they tend to be less powerful
and less efficiently produced than in MAD scenarios.

The models of the accretion processes around supermassive black holes can be
explored through GRMHD simulations (e.g. HARM, Gammie et al. 2012, KORAL,
Sadowski et al. 2014, BHAC, Porth et al. 2017). A simulation begins by setting initial
conditions for the spacetime metric (usually Kerr), the plasma distribution (typically
a thick torus) and the magnetic field structure. Then the configuration is evolved
according to the GR and magneto-hydrodynamic equations of motion.

The initial conditions of GRMHD simulations do not include jets, which instead
arise naturally as the simulations progress. Two models describe the possible mech-
anisms responsible for the launching and collimation of the jets. In the Blandford-
Znajek model (BZ, Blandford and Znajek 1977), rotational energy is transferred di-
rectly from the black hole spin to the jet by large scale magnetic fields threaded through
the horizon. Charged particles are accelerated from the polar regions of the black hole
magnetosphere into a pair of highly-relativistic, collimated jets. A second mechanism
is the Blandford-Payne model (BP, Blandford and Payne 1982), in which the energy
that powers the jet is extracted from the rotational kinetic energy of the accretion
disk via magneto-centrifugal forces. In this model, charged particles are accelerated
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Figure 1.9: Radio jet in 3C 120. The image of 3C 120 observed by the VLBA at 43 and
22 GHz shows the typical knots in the jet, i.e. the bright, discrete “blobs”, which are usually
interpreted as shock perturbations in the jet plasma. Image from Gémez et al. (1999).

along large-scale magnetic field lines that are anchored in the rotating disk. The BP
mechanism produces a collimated jet or wind, that is less relativistic than BZ jets.
The BZ mechanism is generally associated with MAD accretion flows and is favored
by observations (e.g. EHTC 2019¢), while the BP mechanism is more predominant
in SANE models. The two mechanisms can also coexist in the same system, leading
to a jet with higher velocities in the spine and lower ones in the external sheath. As
the jet progresses away from the black hole, the magnetic fields responsible for the
collimation, remain wrapped around it in a helix structure. The charged particles
in the jet plasma are accelerated along the threaded magnetic field, resulting in the
characteristic emission of synchrotron radiation (see section 1.3.2).

The flow of plasma along the jet is often turbulent and subject to instabilities.
Typical jets images from VLBI observations show the presence of multiple knots, i.e.
bright, discrete, “blob” features (e.g. Figure 1.9), along the jet. In the last decades,
extensive observations and studies have been conducted to track the motion of knots
in multiple jet sources. These features are usually interpreted as shock waves in
the plasma, following the first shock models by Blandford and Koénigl (1979) and
Marscher and Gear (1985), and are characterized by a sharp increase in density and
a discontinuity in velocity with respect to the surrounding, unshocked regions. The
pattern speed of the shock perturbations may be higher or lower than the rest of the
plasma. Traditionally, the motion of knots has been measured by modeling the jet
with simple Gaussian components fitted to the observations, a technique referred to
as model fitting.

In this thesis, we focus on the parsec-scale relativistic jets observed in blazars, which
are primarily observed though VLBI observations. Initial studies of these sources be-
gan in the 1990s (Wilkinson 1995; Zensus 1997) and were significantly advanced by
dedicated monitoring programs such as MOJAVE (Monitoring of Jets in Active Galac-
tic Nuclei with VLBA Experiments, Lister et al. 2016) and BEAM-ME (Blazars En-
tering the Astrophysical Multi-Messenger Era, formerly VLBA-BU-BLAZAR, Jorstad
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et al. 2017). Monitoring programs have been observing dozen of blazars at multiple
frequencies, for decades up to today, using the Very Long Baseline Array (VLBA)
interferometer (Napier et al. 1994). We image two of these sources, 3C 84 and 3C 345,
in Chapters 3 and 4.

1.3 Radiative processes in relativistic jets

1.3.1 Relativistic effects

In the absence of gravity, General Relativity reduces to Special Relativity (SR), which
is the theory that describes the geometry of space and time for observers in inertial
frames. Special Relativity must be invoked to describe objects that move at relativis-
tic speeds, while for non-relativistic velocities it reduces to Newtonian physics. The
most important effects of special relativity are time dilation and length contraction.
Considering two inertial reference frames moving with relative velocity v, the proper
time t and the proper length s measured at rest in one frame are measured in the
comoving frame of a moving observer as:

t'=~t,

-1

, (1.6)
s'=v""s,

where the Lorentz factor v is:

1 v
= ,  with =—.
7 v1i-p p c
The particles accelerated in AGN jets are highly relativistic and therefore exhibit
relativistic phenomena. Following Ghisellini (2013), we introduce here two of them,
superluminal motion and Doppler boosting, whose effects are taken into considerations
in the discussions in Chapters 3 and 4.

(1.7)

Superluminal motion Because of the finite velocity of light, objects that are trav-
eling at relativistic velocities close to the line of sight may appear to have velocities
higher than the speed of lights. This effect is called superluminal motion and is caused
by the different light paths covered by the light emitted by a moving object. Let’s
consider the situation represented in Figure 1.10, where an object is moving from point
Py to point P, covering a distance s in a time At =ty — 1, with velocity v = s/At.
The object is emitting light at an angle 6 towards an observer at a distance d. The
light emitted by the object in P, is received by the observer at a time t,pp 2 = t2+d/c,
while the light emitted in Py is received at a time t,pp, 1 = t1 +d/c+ 5| /c. Therefore,
the observer sees the object cover the distance s; in a time interval:

S S
Atapp = tapp, 2 — tapp. 1 = t1 — ta — % = At =~ cos, (1.8)

resulting in an apparent velocity:

51 vAtsing  wvsinf (1.9)
Uapp_Atapp_At—%cose_1—%C059’ .
or equivalently
[Bsin @
a = 5 1.1
Bapp 1— Pcosb (1.10)
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Figure 1.10: Superluminal motion.

where 8 = v/c is the velocity expressed in light speed units. As velocities approach
the speed of light (v — ¢), the apparent speed Ba.pp can exceed the speed of light,
increasing for smaller angles with respect to the line of sight. Superluminal motion
is a kinematic effect, not a special relativity effect, but it only becomes relevant for
objects moving at relativistic speeds. This happens for traveling bright components in
blazar, which can reach apparent speeds of a few tens of the speed of light (e.g. Lister
et al. 2016).

Doppler boosting Considering again the situation in Figure 1.10, if the object is
moving at relativistic speed, the frequency and intensity of the emission measured
in the observed frame are different from the ones in the comoving frame. In classical
mechanics, a wave emitted by a source moving at velocity v along a trajectory forming
an angle 6 with the line of sight is observed at a frequency v/, different from the
emission frequency v. This is a kinematic effect, known as Doppler boosting and the
two frequencies are related through the equation:

, c 1
= = 1.11
g 1—61/’ (L1.11)

where c is the wave velocity. In the relativistic case, because of time dilation, the wave
period T, measured in the observer’s frame is related to the wave period T, observed
in a frame comoving with the wave source by

T,=~T., (1.12)
which, in terms of frequencies, is equivalent to
vo=7"tv,. (1.13)

Combining the two effects, we obtain that the received frequency, measured in the
observer’s frame, is equal to:

1
Vi=yt = —— . =6, (1.14)

v =5)

where )

is the relativistic Doppler factor.
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Doppler boosting does not only affect the frequency of the emission but also the
intensity. The monochromatic intensity I, is defined as the energy dE = hvdN passing
through a unit surface dA perpendicular to the photons arrival direction, per unit time,
per unit solid angle, per unit frequency:

dN

II/ = hym . (1.16)

Applying the transformations dt’ = §~1dt, dQ¥ = 6~2dS?, which can be derived simi-
larly to the frequency transformation in equation (1.14), the observed intensity is

F—p AN’ AN

! 3
T a T dATIO = .1
v 14 dt'dv' d A dSY h(sy(sfldté‘dl/(s*QdQ dA 1) I, , (1 7)

where the number of particles dN and the area dA perpendicular to the motion are
Lorentz invariants. For particles moving close to the line of sight (§ — 0) at relativistic
speed (6 — 1), the Doppler effect boosts the intensity by a large factor. This makes
the relativistic jets in blazar sources appear significantly brighter than they are. At
the same time, the counterjets that are pointing away from the observer are affected
by the Doppler effect in the opposite way and appear dimmer, to the point that in
many cases they are undetectable and only one of the two jets is observed.

1.3.2 Synchrotron emission and polarization

The primary mechanism that generates the radio emission that we observe in blazars
is synchrotron radiation, produced by the acceleration of relativistic electrons along
the magnetic fields threading the jet. Here we present the main characteristics of the
emission, following Rybicki and Lightman (1979) and Ghisellini (2013).

A charged electron moving with velocity ¥ in a magnetic field B is subject to the
Lorentz force:

F=e(@xB), (1.18)

where e is the electron charge. For relativistic speeds, Newton’s second law takes the

form:

d .,
%(’ymﬁ) =e¢(U x B), (1.19)
which can be decomposed into components parallel and perpendicular to the magnetic

field:

~—

’ymﬁu =eé€ (’UH X é =0, (1.20)
ymi, = e (7. x B), (1.21)

where @) | = dv| | /dt and we used y = const because the Lorenz force is conservative.
These equations describe a constant motion in the direction parallel to the magnetic
field, composed with a circular motion in the plane perpendicular to it, resulting in a
helical motion along the the field lines (a diagram representing the situation is shown
in Figure 1.11). The centripetal acceleration is a; = vf_ /rr, where 7, is the Larmor

radius:
ymuvyL

5 (1.22)

TL
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Figure 1.11: Synchrotron emission. Credit: E. Alexander.

The angular frequency of the circular motion, known as the cyclotron frequency we, is:
v eB
We=—=—.

1.23
" om (1.23)

The power emitted by an accelerated particle is Lorentz invariant and is given by the
Larmor formula

2¢* 1 )o 12 2¢° (5 5 2
= g (o + ) = S (b +al) (1.24)

where the primed quantities refer to the particle’s reference frame, and the unprimed
ones to the reference frame of a static observer.

In our case a = 0 and, considering a pitch angle o between the magnetic field
and the electron, we can insert the expressions for the centripetal acceleration and the
Larmor radius in the above equation to obtain:

P

P2 egpe g 1.25

= 3oz B°B*sin” «v . (1.25)
This is the total power radiated by a single relativistic electron moving in the magnetic
field.

For a non-relativistic electron in circular motion, the emitted radiation would be
at the cyclotron frequency w.. However, because of beaming effects, at relativistic
velocities the majority of the radiation is focused into a narrow cone of half-angle ~ 1/
along the direction of motion. An observer therefore sees only short pulses of radiation
as the cone briefly points in its direction. These short pulses lead to a spectrum that
extends to much higher frequencies than w.. The spectrum of synchrotron radiation
from a single electron is broad and peaks around a critical frequency v, which is given
by:

3 ey?Bsina

.= 1.26
47 mc ( )
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The resulting spectral distribution is:

Pv) = V3e'Bsina < v > : (1.27)

me? 7
where F'(z) is a dimensionless function describing the shape of the synchrotron spec-
trum (for the derivation and the details of F, see e.g., Rybicki and Lightman 1979.)
To obtain the total power emitted by the plasma, one needs to integrate the power
P(v, E) emitted by a single electron of energy E, over the whole energy distribution.
Typically, in the jet plasma, it is assumed that electrons follow a power law distribution

N(E)dE = NoE ?dE , (1.28)

where N(E) is the number density of electrons with energy in [E, E + dE] and p is the
particle population index. Assuming isotropic emission, the synchrotron emissivity
(or emission coefficient) of the plasma is given by:

jo = % / N(E)P(v,E)dE (1.29)

which will also result in a power law distribution over frequency. However, the emission
that actually exits the source will depend on the amount of radiation re-absorbed by
the source itself. This is described by the radiative transfer equation, which relate the
monochromatic intensity I, to the emission and absorption coefficients j, and k, by:

dl, = j,ds — kI, ds (1.30)

where s is the linear space coordinate. We define the optical depth 7, as the line
integral of the absorption coefficient:

T, z//@ ds. (1.31)

When 7, < 1 the source is optically thin, meaning that a part of the radiation at fre-
quency v escapes the source. On the contrary, when 7 > 1 the source is optically thick
and all the radiation is absorbed. Integrating equation (1.30), under the assumption
that j, and k, are constant in space, we obtain:

I, = %(1 —em) (1.32)

which is the monochromatic intensity emitted by the source. Then, the intensity
received by the observer will be affected by the relativistic effects described in the
previous section.

Polarization For a single electron, the emitted radiation is linearly polarized in the
plane of acceleration. In the case of synchrotron radiation, the acceleration is perpen-
dicular to the magnetic field, so the observed polarization will be perpendicular to the
magnetic field lines projected in the sky plane. The polarization of electromagnetic
radiation can be described by the Stokes parameters:

I=I|E*+|Ey|?,
Q=|E*— B,
U = 2Re(E, E})

V= —2Im(E,E)

(1.33)
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which are defined here with respect to the x and y components of the electric field.
The linearly polarized intensity P, the fractional linear polarization my, the electric
vector position angle (EVPA) x, and the fractional circular polarization m,. are related
to the Stokes parameters by:

P=vO24+U? | learctan<g),

2 (1.34)
N(LERTE v
me=—7— , me= 7.

The amount of fractional polarization in a jet depends on the electron energy
distribution. The maximum fractional polarization for an optically thin source is
around 70% for a perfectly ordered magnetic field. If the magnetic field is disordered,
linear polarizations of different orientations cancel out, resulting in typical polarization
values of 10-20% or less.
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Methodology

2.1 VLBI observations and imaging

Astrophysical objects are observed across the full electromagnetic spectrum, from ~y-
rays to radio frequencies, using different kinds of telescopes. The smallest angular
scale that a telescope can resolve is proportional to the observing wavelength A and
inversely proportional to the diameter D of the telescope, through the relationship:

1.22 )\
0~ —— 2.1
= (21)

which sets the diffraction limit of the telescope. For radio frequencies, antennas can
reach sizes of ~100 m, while larger antennas are limited by engineering and mainte-
nance considerations.

So, for example, for the Effelsberg 100-m Radio Telescope (Wielebinski et al. 2011)
this means that at the observing wavelength of 3.5 mm the maximum achievable res-
olution is ~10”. However, numerous interesting radio sources, like AGN relativistic
jets and supermassive black holes, have angular sizes that are 10? — 10° orders of mag-
nitude smaller than the arcsecond. The resolution limitation of single radio antennas
can be overcome through radio interferometry.

An interferometric array consists of a set of different antennas that observe simul-
taneously the same target in the sky. According to the van Cittert-Zernike theorem
(Cittert 1934; Zernike 1938), the time-correlated signal of each pair of antennas is
equal to the spatial Fourier transform of the observed source, evaluated at a frequency
proportional to the projection of the antennas distance (or baseline) in the image
plane. Therefore, a set of accurately spaced antennas may sample numerous Fourier
components of the observed target, from which it is possible to recover the sky image,
with an angular resolution up to:

(2.2)
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where B is the maximum baseline distance. The field of view (FOV) is instead limited
by the minimum baseline distance b and is affected by time and frequency averaging
smearing effects as well as the a beam size of each antenna.

The following subsections will introduce the fundamental concepts of radio inter-
ferometry and image reconstructions, in the context of Very Long Baseline Interferom-
etry, with a focus on observations of relativistic jets and supermassive black holes. An
in-depth explanation of radio interferometry and imaging can be found in Thompson
et al. (2017), which served as the main reference for the present section. section 2.1.1
presents the assumptions and proof of the van Cittert-Zernike theorem, section 2.1.3
discusses the sources of noise in interferometric observations and the general strategies
to minimize their impact. section 2.1.2 introduces the concept of Earth rotation syn-
thesis on which VLBI is based, while section 2.1.4 and section 2.1.4 discuss different
imaging methods for static and variable sources.

2.1.1 Interferometer response

We consider the case of an extended incoherent source, located in a distant plane,
whose emission is being measured by two antennas at points P; and P» in a plane
parallel to the source (Figure 2.1). The source is assumed to be in the far field,
implying that the line of sight direction from points 1 and 2 is the same, that the
source can be approximated as two-dimensional, and that the angular extension of the
source is small compared to its distance from the observation points.

A radio antenna records a signal proportional to the received electric field. For the
emission of a point element in the source, which is identified with the direction vector
§, the two antennas receive the signals:

Ey(5,t) = A(5,t)e 2t

’ 2.3
E2(§7 t) = A(§‘, t+ 7—)6*227ry(t+7) ’ ( )

where A and v are the amplitude and frequency of the electromagnetic wave and 7
is the geometric delay between the arrival of the signal at the two antennas. For a
baseline distance I_;, the time delay is proportional to the scalar product between the
baseline vector and the line of sight vector:

T=——, (2.4)

where the minus sign introduced because of the direction of vector b chosen is Fig-
ure 2.1. For an extended emitting source, the measured electric field is given by
integrating equation (2.3) over the solid angle S subtended by the source:

= / / d5 A(5, t)e 2!
0= [[ s ( iy ] ) (i (i-E5)

Assuming that the bandwidth Av is small enough that E-T§ < ﬁ, we can assume that
the amplitude of the signal is constant over the time delay scale. During correlation,

(2.5)
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Figure 2.1: Interferometric pair. An incoherent extended source S is observed in the far
field by two antennas at points P and P»>. The antennas are separated by the baseline vector
l;, while points in the source are identified with the direction vector s. The difference in the
light path from the source to P; and P» is given by b3

the conjugate product of the signal recorded by each pair of antennas is averaged in
time. The signal exiting the correlator is:

R(E) := (E1(1) // asi / 455 (A(57, ) A% (53, ), 252 . (2.6)

For an incoherent source, the radiation from any two points is statistically independent,
so:

(A(s1, ) A" (53, 1), = 6(s1, )I(s3) , (2.7)

where I(8) is the time averaged intensity. In this case, equation (2.6) becomes:

// 5‘)6*127”’* (2.8)

The correlation product of two antennas is referred to as a complex visibility V. The
coordinates of the baseline vector projected in the image plane are usually expressed in
units of the observing wavelength b= (b, by) = (uX,v\), while the source extension is
described by angular sky coordinates § = (x,y). With this notation, the van Cittert-
Zernike theorem takes the form:

V(u,v) = / / I(z, y)e~ 27w+ g gy (2.9)

which states that the interferometric correlation products are equal to the spatial
Fourier transform of the sky brightness distribution. Imaging VLBI data consists in
inverting the above equation to recover the source image I(x,y).

In practice, the receivers of radio telescopes record the incoming electromagnetic
wave under two separate polarization states, either with a linear feed, which is sensitive
to the x and y components of the electric field (E*, EY), or a circular feed, which is
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Figure 2.2: Earth rotation synthesis. Example from observations of Sgr A* with the EHT
array in 2017 (EHTC 2022a). The first row shows the baselines between the observing an-
tennas for three different times, while the second row shows the corresponding instantaneous
coverage in red and the total one in gray. Figure from Fuentes (2022).

sensitive to the left and right components of circular polarization (E”, EY). Therefore,
for a pair of antennas (i,j), there are four possible correlation products, that are
described by the coherency matrix:

_((EE (EE
wo=( (e (oo ) (210)

which is here written for the case of a circular feed. Assuming that the measurements
are only affected by stochastic thermal noise, the coherency matrix is related to the
polarimetric visibilities (VZ, V<, V¥ VV) by the relationship:

_( VELVY) (Ve VY,
Pij = < (VQ _ ZVU>” (VI _ Vv)ij ) 5 (211)

which can be inverted to obtain the visibilities associated with the Fourier transform
of each Stokes parameter (Z, Q,U,V). In section 2.1.3, we will discuss how the above
equations are affected by realistic noise corruption.

2.1.2 Earth rotation synthesis and VLBI

In order to invert equation (2.9) and image the observed source, the Fourier transform
must be sufficiently sampled in the (u,v) plane. This can be achieved with a high
number of properly spaced antennas and/or by relying on the rotation of the Earth.
Indeed, as the Earth rotates, the projected baseline vectors change length and orien-
tation with respect to the line of sight, allowing to sample multiple spatial frequencies
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with the same pair of antennas (Figure 2.2). Observations may be conducted for sev-
eral hours to allow the maximum exploitation of the Earth rotation. This technique is
known as Farth rotation synthesis and enables a much denser sampling of the Fourier
space, and/or a reduction of the minimum number of antennas required.

To maximize an interferometer’s resolving power, the antennas in the array can be
placed as far apart from each other as possible. In fact, antennas do not need to be
physically connected, but can be placed thousands of kilometers apart, with baselines
distances up to the size of the Earth. The technique that combines signals from a
network of widely separated antennas that operate independently is called Very Long
Baseline Interferometry. Connected arrays, like the Atacama Large Millimeter Array
(ALMA, Wootten and Thompson 2009), the Very Large Array (VLA, Thompson et
al. 1980), or the future Square Kilometer Array (SKA, Dewdney et al. 2009), perform
real-time correlation of the observed signals. On the contrary, in VLBI arrays, like
the Very Long Baseline Array (VLBA, Napier et al. 1994, Figure 2.3) or the Event
Horizon Telescope (EHT, EHTC 2019b, Figure 2.3), the antennas record the incoming
radio signals with time stamps measurements by atomic clocks. These recordings are
later physically shipped to the same location and correlated offline. VLBI arrays can
reach resolutions down to 20 microarcseconds, which enables detailed observations of
the inner sections of relativistic jets and horizon scale observations of supermassive
black holes.

2.1.3 Measurement noise and error mitigation

Interferometric measurements are affected by various sources of noise. Measurement
errors can be modeled into antenna-based errors (or complex gains) and baseline de-
pendent errors (i.e. stochastic noise). Accordingly, for a pair of antennas (i, ), the
measured visibilities V' are related to the true visibilities V' by:

V;/] =G; G; ‘/ij + €5, (212)

where G ; = giyjewi/f are the complex antenna-based gains describing phase errors
1 and amplitude gains g associated with antennas ¢ and j, while ¢;; is the stochastic
thermal noise associated with the (i, j) baseline. For a given baseline (i, j), the mea-
sured amplitudes A}; and phases ¢;; are related to the true amplitudes A;; and phases
¢ij by:

b = Gij + Vi — Y; (2.14)

Phase errors may be caused by an incorrect estimation of the time delay between two
antennas. This may be due to errors in the measurement of the antennas’ positions,
clock errors or to local random fluctuations in the atmosphere’s refractive index, which
increase the light’s path length. To mitigate phase errors, a calibration process called
fringe fitting is performed to search for the phase correction that yield the highest
correlation values. Amplitude gains are determined by the antenna’s amplification of
the received signal. A pair of amplitude gains is the multiplicative factor that converts
correlation coefficients, which are given in units of noise power, to physical flux density
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Figure 2.3: VLBI arrays. Locations of the antennas in the EHT array (top) and the VLBA
array (bottom). For the EHT array, red points mark the antennas present in 2017, while
green points denote antennas added between 2018 and 2025.

units (usually Jansky). They are given by the expression:

1 7et: - DPFU
_ _ e , 2.15
9= JSEFD, Tope, (2.15)

where the System Equivalent Flux Density (SEFD) is the total system noise repre-
sented in units of equivalent incident flux density, T'sys is the effective system noise
temperature, the Degrees Per Flux Unit (DPFU) is the conversion factor from tem-
perature units (Kelvin, K) to intensity units (Jansky, Jy) correcting for the antenna’s
aperture efficiency, and 71 ; is the gain curve, which models the elevation dependence
of the telescope’s aperture efficiency. In principle amplitude gains can be computed
from the antennas specifications (a-priori calibration) but in practice some of these
quantities may be incorrectly estimated, resulting in residual amplitude gain errors.
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To mitigate this possibility, the observation of the target source is alternated with the
observation of a nearby source of known brightness, which is used as a calibrator for
the amplitude gains. However, for millimeter VLBI it is very difficult to find suitable
calibrator sources with well-known brightness and structure because, at these frequen-
cies, most of them are internally resolved and time variable. In addition to errors in
amplitude and phase, interferometric measurements are also affected by thermal noise
due to the receiving instrumentation. This source of noise is stochastic and can be well
characterized by a Gaussian distribution, whose width determines the uncertainty of
the observed visibilities.

Even after careful fringe fitting and a-priori amplitude calibration, residual cali-
bration errors may still be present in the data. One possible mitigation strategy is
self-calibration, which consists in making an assumption about the true image, comput-
ing the visibilities associated with that image, equating the visibilities to the observed
ones, and solving for the complex gains. Self-calibration can be performed on phase
gains, amplitude gains or both, but is effective only if the assumed image is a good
model of the true one, otherwise it carries the risk of biasing the data in favor of the
model image.

Another way to address residual calibration uncertainty is to construct data prod-
ucts that are invariant with respect to phase or amplitude gains. Considering a triangle
of antennas (7, §, k) and the corresponding baselines, we can define a closure phase @y,
as the sum of the three visibilities phases associated with the triangle:

Uk ¢z] + (Zsjk + ¢]m ) (216)

where primed quantities refer to measured phases, to distinguish them from the true
phases. Using equation (2.12), the closure phase can be rewritten as:

Qi = (hij + Vi —0j) + (D5 + V5 — V) + (dri + Vi — i)

(2.17)
= ¢ij + Pj + ri

which shows that phase errors are canceled in the triple phase sum. Similarly, consid-
ering a set of four antennas ijkl, we can define a closure amplitude A;ji as:

Vi1Vl
Az]kl ‘ H | 5 (218)

where again primed quantities indicate measured values and equation (2.12) allows to
show that amplitude gain errors cancel in the double ratio:

9i951Viilgr gVl Vil Vil

" 9i96Viklgs ol Vil [Vikl[Vil

(2.19)

For an array of N antennas the number of complex visibilities is N(N — 1)/2, for a
total of N(N — 1) degrees of freedom. Instead, the maximum number of indepen-
dent closure phases and independent closure amplitudes that can be constructed is
respectively (N —1)(N —2)/2 and N(N — 3)/2, meaning that, while closure quantities
are independent of gain errors, they carry less information compared to the full set
of visibilities. In particular, closure phases lose the information about the absolute
position of the source, while closure amplitudes lose information about the total flux
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of the image. However, as the number of antennas grows, the information contained in
closure quantities tends to that of the complex visibilities, reaching, for example, 80%
of the total information for arrays of 11 antennas. As discussed in section 2.1.4, the
recently developed forward imaging methods are able to make use of closure quantities
in the image reconstruction process, thus avoiding mis-calibration biases.

Additional sources of error may affect polarimetric visibilities. Due to hardware
imperfections, the receiver may not separate correctly the two orthogonal polarization
states, resulting in polarization leakage, where part of the signal from one polarization
state is mixed with the other. The effect of leakage is modeled and quantified by
D-terms (Dg, Dy,), which, for a circular feed, are defined by the equations:

E. = E,+ DrE
ro R (2.20)
Ey=E+DLE,,

in which (E/, E}) are the measured polarization states, while (E,, E,) are the true
ones. Polarization leakage and complex gains can be elegantly incorporated in the
coherence matrix formalism through the introduction of the Jones matriz associated

to the antenna:
(G O 1 Dg
(S84 ), @21

which links the measured coherency matrix p’ to the true one:
Py =Jipig Il (2.22)

2.1.4 Image reconstruction and imaging methods

In VLBI, even with Earth rotation synthesis, the spatial frequencies of the (u,v)-
domain remain under-sampled, with the coverage often displaying anisotropy in the
distribution of sampled frequencies and different sampling densities from region to
region. If this was not the case, an image of the target source could be recovered
simply with a discrete inverse Fourier transform of the visibilities. Instead, imaging
VLBI observations constitutes an ill-posed inverse problem, meaning that there is an
infinite set of possible images that would be compatible with the data. In mathematical
terms, the true image source Iiyue(,y) is observed through an under-sampled Fourier
transform F [I(2,y)true] Which yields a set of N visibilities V' = {V,,(u,v)}nep,np-
Imaging consists in reconstructing an image I(z, y) that is consistent with the observed
data and is as close as possible to the true underlying image. To retrieve the most
likely image, among the infinite set of possible ones, prior assumptions or information
about the source need to be incorporated into the imaging process.

A variety of methods have been developed, especially in recent years, to address
the VLBI imaging problem. These approaches are generally classified into inverse
imaging methods and forward imaging methods. Inverse imaging methods begin by
applying a direct Fourier transform to the visibilities, producing the so called dirty
image, which is the convolution of the real image with the interferometer’s point
source response function, known as dirty beam. The dirty image is then progressively
refined to reconstruct the final image. In contrast, forward imaging methods start
with a tentative model of the image, which is optimized until its Fourier transform
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matches the observed visibilities. Inverse methods amount to variations of the same
core algorithm, CLEAN, which was the first method to be developed (Hégbom 1974)
and remains the most widely used in the VLBI imaging community.

In the last decade, the development of forward imaging methods was driven by the
necessity to image the extremely sparse datasets of horizon-scale observations of the
M87* and Sgr A* black holes by the EHT (EHTC 2019a; EHTC 2022a). To reach a
resolution of ~20 pas, the EHT is composed of ~10 antennas scattered around the
globe, which means that many stations cannot observe simultaneously or do so for a
short amount of time, making the Fourier coverage extremely sparse. Furthermore, at
the observing frequency of 230 GHz, phase gains from atmospheric fluctuations vary
on a timescale of minutes, completely corrupting the visibility phases. In the case
of Sgr A*, interstellar scattering from the Milky Way and the intrinsic variability of
the source further complicate the imaging process. The effort to tackle the unique
set of imaging challenging posed by EHT observations resulted in a variety of imag-
ing algorithms, which have in common the ability to produce super-resolved images,
improving over the nominal beam resolution limit of CLEAN. The majority of for-
ward modeling methods belongs to the general categories of Regularized Maximum
Likelihood (RML) methods and Bayesian methods. In the following paragraphs we
provide a brief overview of CLEAN, RML, and Bayesian imaging methods, focusing
on the core concepts of each kind of algorithm and highlighting its advantages and
disadvantages.

CLEAN. The CLEAN imaging method is based on the assumption that the image
can be described by a collection of unresolved point sources, making it especially
suitable for compact sources, rather than extended ones. The first step of the algorithm
consists in computing the inverse Fourier transform of the observed visibilities to obtain
the dirty image Iqity(z,y) = F~1[V], which is equal to the convolution between the
true sky brightness and the dirty beam:

Idirty(xa y) = Itrue(xa y) * Bdirty(xa y) . (2'23)

Then, a scaled version of the dirty beam is subtracted from the dirty image at the
location of the maximum brightness point, while the location (z;,y;) and brightness
I; values are added to a list of delta function components {I;6(z — x;,y — y;)}. This
process is repeated iteratively until the image only consists of the residual brightness
R(z,y) that is lower than the noise level. The final set of components is convolved with
the clean beam Bgjean, an elliptical Gaussian fitted to the dirty beam, which defines
the nominal resolution of the array. The resulting image is then added to the residuals
to obtain the final image:

I($7 y) = Z I’Lé(x — XY — yz) * Bclean + R(.’IJ, y) . (224)

The iterative cleaning process, usually requires the user to restrict the regions in which
components can be searched (cleaning windows), and this introduces arbitrariness in
the imaging procedure. Another limitation of CLEAN is that it relies on complex
visibilities to compute the inverse Fourier transform, requiring a good a priori calibra-
tion of both amplitudes and phase gains. This is achieved by first self-calibrating the
dataset to a simple model, usually a Gaussian, and then alternating CLEAN steps with
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self-calibration to the provisional image. The CLEAN method has been extensively
employed for decades and has proven effective in imaging a wide range of sources,
establishing it as the standard benchmark against which more advanced methods are
compared.

RML methods. Regularized Maximum Likelihood methods define the image as a
square matrix of flux density pixels I = {I(z;,y;)} and optimize the pixel values to
minimize the loss function:

J(I)=> apxp(I, V)= BrSrI). (2.25)
D R

The first sum in the loss is the data term, which enforces compatibility between the im-
age and the observations through a x? computed for the chosen data products D. The
second sum is the regularizer term, which enforces correlation among pixels, constrain-
ing the possible solutions to the ill-posed imaging problem. The choice of regularizers
R may favor different properties of the image, such as sparsity, similarity with a prior
image, continuity, or smoothness, or set physical constrains, like the total integrated
flux (see EHTC 2019d, for a list of the most common regularizers). The coefficients
ap and Bgr that weight the data terms and the regularizers are hyperparameters of
the method.

The main advantage of RML methods over CLEAN is the ability to perform imag-
ing using only closure quantities, without requiring complex visibilities, making the
imaging process independent from calibration errors. This is especially important for
millimeter wavelength observations, like in the case of the EHT array, where complex
gains completely corrupt the visibility phases. Additionally, the images produced by
RML methods do not require convolution with the nominal beam, since the smooth-
ness in the image is already provided by the regularizers. This allows the algorithm
to achieve an effective resolution higher than the nominal one, typically by a factor
of 2 or 3. The downside of RML methods is that the choice of regularizers signifi-
cantly affects the final image and presents some degree of arbitrariness. If the risk
of bias from an incorrect regularizer choice is high, a hyperparameter survey can be
performed, in order to select combinations of regularizer weights that perform well on
simulated data. Parameter surveys are computationally expensive and necessitate the
preparation of synthetic data. Even though most RML methods have been developed
in the context of black hole observations, they often proved useful also to image less
sparse observations of a variety of sources. For instance, the images of the relativistic
jet in 3C84, which are presented in Chapter 3, were imaged with the eht-imaging
algorithm (Chael et al. 2018). Other methods that are based on RML approaches
include SMILI (Akiyama et al. 2017), DoG-HiT (Miiller and Lobanov 2023), and ngMEM
(Mus and Marti-Vidal 2024). In the past few years, more than a hundred publications
relied on RML methods for imaging interferometric observations, from multiple arrays
including EHT, VLBA, VLA, and ALMA. This indicates the relevance and effective-
ness of this class of algorithms as well as the demand of novel imaging algorithm in
the VLBI imaging community.

Bayesian methods. VLBI imaging can also be approached from a statistical in-
ference perspective. Bayesian methods aim to reconstruct not only the most likely
image, given the observed data and prior assumptions, but also its posterior distri-
bution, which describes the image’s stochastic uncertainty. Most Bayesian methods
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provide a simultaneous parametrized model (I(x,y), {g;})e of the image and the instru-
ment response (e.g. antenna gains, D-terms, noise distribution), where the parameters
0 = {61,...,0,} are considered as stochastic variables. Prior information about the
image is incorporated in the parameter’s prior distributions P(6) and regularization
is implemented through correlation among the distributions of different parameters.
A likelihood function P(V']0) is defined to quantify the probability distribution of the
observed visibilities for given combinations of parameter values. The likelihood func-
tion implements the data constraint, which is usually based on a weighted squared
difference between the data products resulting from a choice of image parameters and
the observed ones. The imaging problem can then be stated as a inference problem, in
which the goal is to recover the posterior distribution of the model parameters, from
the parameters prior distribution and the likelihood distribution of the observed data.
From Bayes theorem:

P(VI6)P(6)

POIV) = =50

(2.26)
where the evidence P(V') can be treated as a simple normalizing factor since it has no
dependence on the parameters. The core of the imaging process consists in sampling
and/or approximating the posterior distribution, by exploring the parameter space
with Monte Carlo methods or other sampling techniques.

Similarly to RML methods, Bayesian algorithms are also able to achieve super-
resolution and use closure data products. Additionally, they have the advantage of
a modular framework, in which it is straightforward to switch between data formats
(e.g. coherence matrix rather than Stokes parameters) and add further modeling of
the instrument’s response and noise corruption. Most importantly, Bayesian methods
provide a quantification of the image uncertainty, which is of great importance in
the case of extremely sparse datasets. This comes at the cost of computational time,
since the sampling of the posterior requires significantly longer run times compared
to CLEAN imaging or RML optimization, making Bayesian methods more suitable
for small sparse datasets and/or outputs described by smaller sets of parameters. A
more subtle limitation of Bayesian methods is that the recovered posterior distribution
is limited to the configurations allowed by the parameter priors, which need to be
carefully defined, in order to allow for sufficient expressivity of the model and at
the same time provide sufficient constrains to the image. State of the art Bayesian
methods include THEMIS (Broderick et al. 2020), Comrade (Tiede 2022), and Resolve
(Junklewitz et al. 2016).

Machine learning methods. In the past few years, a fourth class of methods
based on machine learning (ML) approaches began to emerge, with successful proof
of concept demonstrations but still with limited applications to real science cases (e.g.
DPI, Sun and Bouman 2021, PRIMO, Medeiros et al. 2023, Deep Generative Image
Priors, Feng et al. 2024, DIRECT, Lai et al. 2025). DPI, is an unsupervised Bayesian
method based on variational inference with a normalizing flow. The method is able to
characterize the image uncertainty and does not rely on explicit morphological priors.
However, due to the network’s architecture, the number of tunable parameters grows
linearly with the number of input pixels, severely limiting the scalability of the model.
The other methods mentioned above are based on supervised machine learning models,
which are trained on a dataset of prior images. They produce high quality results but
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Strong morpho-  Uncertainty Run

Method logical priors quantification  time Scalability
RML Yes No short* easy
Bayesian Generally No Yes long difficult
Unsupervised ML No Yes short difficult
Supervised ML Yes No short! difficult
kine No No short easy

Table 2.1: Forward imaging methods comparison. Summary of the most relevant prop-
erties of the different classes of forward imaging methods for VLBI. Common to all forward
methods is the ability to employ closure quantities and achieve super-resolution. *If a pa-
rameter survey is not required. "Run time time is short once the method is trained.

are strongly biased by the choice of the training set. Part of the work of this thesis
consisted in developing a new imaging method based on neural radiance fields, which
overcomes the present limitations of RML, Bayesian, and machine learning method.
The proposed method represents a competitive and more promising alternative to
RML algorithms, and we expect it to have a significant impact in VLBI imaging,
broadening the application of forward imaging methods. The method is presented in
Chapter 4 where it is also applied to the imaging of multi-epoch blazar observations
and it is validated on realistic synthetic EHT observations in Chapter 5. In Table 2.1
we provide a summary of the advantages and disadvantages of the different forward
imaging methods, in comparison with the new method presented in this thesis.

2.1.5 Dynamic imaging

Because of the sparsity of interferometric arrays, VLBI observations strongly rely on
Earth rotation synthesis to sufficiently sample the Fourier space. However, this can
only be applied under the assumption that the flux density distribution of the source
remains unchanged during the course of one observation. This is not the case for
observations of the Sgr A* black hole with the EHT. In fact, the black hole at the center
of our galaxy presents light-curve variability and evidence of structural variability on
timescales of 5-30 minutes (Wielgus et al. 2022; EHTC 2022b; EHTC 2022d), which
is considerably shorter than the ~10 hours of observations required for a sufficient
(u, v)-coverage. Two approaches can be pursued to image the brightness distribution
of a source with intra-day variability. The first possibility is to treat time variability
as statistical uncertainty and increase the error budget on the observed visibilities to
account for it. The imaging process then recovers a “motion-blurred” image, that is
representative of the time average source structure. This approach was applied by the
EHTC to reconstruct the first horizon-scale image of Sgr A* (EHTC 2022c¢). However,
the method marginalizes over time variability instead of characterizing it, limiting the
analysis only to time-invariant properties of the black hole.

The second approach consists in reconstructing a minute-by-minute video of the
source, where each frame corresponds to a single instantaneous observation. This
is feasible if the imaging algorithm enforces correlations across neighboring frames
to compensate for the extreme sparsity of each instantaneous observation, since the
instantaneous coverage of the EHT array alone would be insufficient to constrain
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an image. This method is called dynamic imaging and outputs a sequence of time-
regularized frames, by propagating information from observations at different times.
Like in the case of spatial regularization in classical static imaging, time regularization
can be implemented using different frameworks by adding the temporal dimension to
the domain of the flux density distribution. In RML methods, dynamic imaging is
performed by introducing explicit time regularizers that favor frame-to-frame similar-
ity and motion continuity (e.g. eht-imaging, Johnson et al. 2017), while Bayesian
methods assume a correlated prior distribution for different frames (e.g. StarWarps,
Bouman et al. 2018 or Resolve, Arras et al. 2022). The new method presented in
Chapter 4 relies instead on the spectral bias of coordinate-based networks (see sec-
tion 2.2.2) to provide space and time correlations.

First attempt at black hole dynamic imaging. Dynamic imaging of sources with
intra-day variability is more challenging than static imaging because, with the addition
of the time dimension, the imaging inverse problem becomes even more ill-posed.
Therefore it is important to assess whether the (u,v)-coverage of a specific dataset
is sufficient for a robust reconstruction. A first attempt at dynamic imaging of the
Sgr A* black hole was made by the EHT Collaboration using the StarWarps pipeline
(Bouman et al. 2018), which is based on a Bayesian framework. The method assumes
that each frame I, = I(x,y,t) is sampled from a multivariate Gaussian distribution
with mean g and covariance A:

P(Ii) = Nr1,(1, A) (2.27)

where p sets the image prior and A determines the amount of spatial correlation.
Frames are also correlated in time, with a conditional Gaussian prior distribution

P(Ii| L) = Ny, (I, 5711, (2.28)

in which the parameter [ sets the amount of temporal regularization determining the
maximum frame-to-frame variability. The likelihood function is also assumed to be a
multivariate Gaussian distribution:

P(VilL;) = Ny, (Fi(I), diag[o?];) (2:29)

which can be defined for visibilities, as in the above equation, or other data products.
Assuming these priors and likelihoods, StarWarps computes the most likely image for
each time ¢, taking into account all the observations {V;};—1 . n, using the elimination
algorithm (Koller and Friedman 2009).

StarWarps was applied to EHT observations of Sgr A* on April 6 and 7 of the
2017 observing campaign (EHTC 2022c). The observed datasets were restricted to a
~1.5 hour window which contained an instantaneous coverage of at least 5 antennas.
The pipeline was tested on synthetic data simulated from static geometric models
and GRMHD simulations. Different imaging choices, such as the prior image p and
the amount of temporal regularization 8 were explored, in the reconstruction of both
synthetic and real data. Dynamic imaging results showed that Sgr A* maintained
a stable position angle on April 6, while on April 7 the position angle underwent
a ~140° rotation over the course of 100 minutes. However, these results cannot be
considered sufficiently constraining because different amount of time regularization and
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different image priors (e.g. a ring and a disk prior) resulted in different orientations
of the position angle. StarWarps was able to reconstruct datasets simulated from
some GRMHD models, but, in other cases, the reconstruction of GRMHD synthetic
data was not successful in recovering the correct orientation of the position angle.
Additionally, the pipeline appeared to introduce more variability than what present
in the synthetic data analyzed. This led to the conclusion that the dynamic imaging
methods available in 2022 were not able to recover a robust horizon-scale video of
Sgr A* with the instantaneous coverage of the EHT array on April 6 and 7, 2017.
This motivated, on one hand, the expansion of the EHT array, which progressively
increased from 8 antennas in 2017 to 12 in 2025, and, on the other hand, it prompted
the development of new dynamic imaging methods. Specifically, an effective dynamic
method should be capable of learning the right amount of space and time correlation
from the observed data, reconstruct a video with only negligible dependence on priors,
hyperparameters, or initialization, and be effective even for extremely sparse (u,v)-
coverages.

The major contribution of this thesis consisted in developing such an algorithm,
by employing a deep learning approach based on neural fields. The proposed imaging
method, named kine, is presented in Chapter 4 and successfully validated on EHT data
in Chapter 5. Even though dynamic imaging methods were developed to address the
imaging challenges of intra-day variable sources, they can be also applied to repeated
observations of slowly-varying sources, to image multiple datasets simultaneously in a
continuous video. Chapter 4 presents such an application, describing the advantages
of multi-epoch dynamic imaging.

2.2 Deep learning and neural representations

This section consists of a general introduction to deep learning, followed by an overview
of neural representation models. A comprehensive review on the topic is beyond the
scope of the chapter, which rather aims to provide the reader with the notions necessary
to understand the kine imaging algorithm presented in Chapter 4. In section 2.2.1
we present basic deep learning concepts and introduce the associated terminology.
We will describe neural representation models and discuss some of their properties in
section 2.2.2. Finally, in section 2.3 we describe the optical flow method for video
analysis.

2.2.1 Neural networks basics

Traditional algorithms in computer science consists of a sequence of explicit instruc-
tions that are applied to solve a given task. The last decade and a half, however, has
seen the rise of the field of machine learning, which aims at building algorithms that
learn how to best perform a task from available data, without being explicitly pro-
grammed. ML algorithms are implemented in two steps: first a training step, where
the algorithm learns how to perform the task, and then an evaluation step, where
the algorithm is applied to solve the task. A subcategory of machine learning is deep
learning (DL), which includes all ML algorithms that are based on neural networks
(NN). Neural networks are information processing structures, whose core functioning
was inspired, as the name suggests, by models of biological neurons. In this section
we will introduce the basic components of a simple neural network architecture, state
one of the general problems that neural networks can solve, and describe the steps of
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the NN learning process.

The MLP architecture. The node (or neuron) is the fundamental unit of a neural
network. A node receives an input, performs a sequence of mathematical operations
on it, and returns as output the result of the operations. The simplest kind of node is
a perceptron (Rosenblatt 1958), which applies the following operations (Figure 2.4):

1. Receives a real-valued vector = [x1, ..., z,] as input.

2. Makes a linear combination x — wz + b of the input values with coefficients
(weights) w = [wy, ... w,] and constant term (bias) b.

3. Applies a non-linear transformation (activation function) r — o(x) and returns
the obtained scalar value as output.

Nodes can be combined in parallel to output a multi-dimensional array. A sequence of
parallel nodes is referred to as a layer. Layers can be combined in sequence to create a
fully-connected multi-layer perceptron (MLP), where the output of each layer is used
as input to the following layer. An MLP is one of the simplest feed-forward neural

X
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Figure 2.4: The perceptron. A perceptron is a node of the MLP network architecture.
It performs a linear transformation of the input, followed by the application of a non-linear
transformation.

network (FNN) architectures (Popescu et al. 2009), meaning that it does not have any
recursive loops in its structure. It is characterized by the numbers of layers (depth) D,
the number of neurons per layer (width) W, and the form of the activation function o
(Figure 2.5), all of which are the hyperparameters of the network. The first and last
layers are called the input and output layers, while those in between are called hidden
layers. Mathematically an MLP is represented by a composition of functions:

MLP(z) = U)o wP=D o @M (g) (2.30)
where each function

v@(2) =0 (w@)x + b@')) (2.31)

represents a layer. The collection of all weights and biases {w(i),b(i)} is the set of
tunable parameters of the MLP.
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Hidden Layers

Input Layer

Output Layer

Figure 2.5: MLP architecture. An MLP is a simple feed-forward neural network that
processes the input through a sequence of fully-connected layers. For each layer, each line
represents a weight w;;, while blue circles represent the bias b; and activation function.
Orange circles represent input and output values. In this example, the MLP has a depth of
4 and a width of 4.

Universal function approximators. Neural networks can be employed for a wide
variety of tasks, one of them being function approximation. In particular, NN are
especially useful to approximate complex functions that are difficult or impossible to
define explicitly. In this context, the general problem consists in finding the function
f that maps an input x € X to the corresponding output f(z) = y € Y, without
knowing the explicit form of f. A possible approach is to find the best approximation
to f by defining a parametrized function f; and tuning the parameters ¢ until f*
converges to f. The function f* can be provided by a neural network, for example
an MLP, so that f* will consists of an iterative composition of linear and non-linear
functions, parametrized by the weights and biases of the network. Cybenko (1989)
and Hornik (1991) proved that a sufficiently wide FNN, with at least one hidden layer
and a non-linear activation function, can approximate any continuous function on a
compact domain to an arbitrary degree of accuracy. This is known as the Universal
Approximation Theorem and explains why neural networks are optimal tools for func-
tion approximation. In particular, the non-linearity of the activation function is the
key factor that enables a NN to express complex functions. However, the Universal
Approximation Theorem does not provide indications on how to find the best network
parameters or what is the most efficient architecture. Therefore, the choice of the net-
work hyperparameters and optimization method are crucial to steer the optimization
in the right direction and achieve a good approximation. The VLBI imaging algorithm
presented in 4, employs a neural network to approximate the function describing the
time and space distribution of the source’s flux density. This means that function
modeled by the network is the image or video itself, rather than an operation that
produces the image or video.

Training procedure. To approximate a desired function, a neural network needs
first to be trained, which means optimizing its parameters so that the difference | f— f;|
is minimized. Since the function f is unknown, in practice one needs to define a
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different but equivalent loss function £, which is also minimized when f* — f. There
are two kinds of training procedure, named supervised and unsupervised learning.
Supervised learning is usually applied when the DL algorithm needs to learn the
underlying relation between the elements of two datasets and it requires a labeled set
of input-output pairs {(z(?),y()}, called training set. The network uses the pairs in
the training set as reference examples to optimize its parameters to reproduce the
correct output for any given input. In this case, the loss function is usually a function
of the distance between the labeled outputs y; and the estimated network outputs
yr = f*(x;), averaged over the training set:

N

1 .
L::NZH%—%W (2.32)

i=1

Unsupervised learning, instead, is performed without labeled example data and it is
applied when the algorithm is required to learn implicit patterns and correlations in the
data. In this case, the loss function will include a term that constrains the output to be
compatible with available data and possibly terms that constrains specific properties
of the output.

In both cases the loss function depends on the network’s output, which in turn
depends on the network’s parameters. Training the network consists of applying a
gradient descent optimization on the loss function. This is based on the computation
of the loss function derivatives with respect to the network parameters by applying
the chain rule, a procedure referred to as backpropagation. At each iteration of the
gradient descent, the weights and biases of the network are updated to:

oL
60— 0 Qg (2.33)
where the learning rate (LR) « determines the extent of the gradient descent step and
the speed of the convergence of the training.

Computing the full loss function gradient is often a computationally expensive
operation. In this case, the gradient descent optimization can be replaced by the
stochastic gradient descent, which consist in computing the loss function only over a
subset of randomly selected training data, called batch, which changes at every itera-
tion. This enables faster iterations at the expense of the convergence rate. Different
variants of the gradient descent can be used as optimization procedure. One of the
most commonly used is Adam (Kingma and Ba 2014), an adaptive moment estimation
optimizer, which adapts the learning rate of each parameter independently, depending
on the average and variance of the last few gradients. This algorithm is appropriate
for optimization problems with a large set of parameters and noisy gradients.

Overfitting, validation, and hyperparameters. During the training phase, the
network learns to produce the desired output corresponding to the input data available
in the training set. However, the NN must also be able to provide a correct output
for input data outside of the training set. The risk indeed is that the network learns a
function that overfits the training set and is not able to generalize further. This issue
is addressed in the wvalidation phase, in which the NN is evaluated on a separate set
of data. As opposed to the training phase, during validation, the trained network is
applied and evaluated on new data (the validation set) without varying the network
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Figure 2.6: Activation functions. Examples of the most common activation functions.

parameters. The validation phase is usually alternated to the training phase and the
hyperparameters are manually adjusted to find which architecture and settings are the
most efficient in minimizing the loss function and provide the best performance. After
training and validation, the testing phase takes place. In this final step the network is
applied to a new set of data (the testing set), without varying the parameters nor the
hyperparameters, in order to evaluate the final network’s performance. In the case of
the MLP architecture, the hyperparameters that may be adjusted during validation
include: the depth and width of the network, additional connections among nodes
(skip connections), the activation function (some examples are shown in Figure 2.6),
the learning rate, the batch size, the weight of each loss term, and the total number
of iterations.

The width and depth determine the amount of information that the network can
process and therefore its expressivity. The more complex the function that the NN
should learn, the higher the number of necessary layers and nodes. However, an
excessive increase of the number of tunable parameters may result in instabilities in
the backpropagation and longer training time. Therefore the width and depth should
be kept to the minimum value sufficient to provide the required expressivity. Skip
connections can help propagate information and structures from the input to further
layers. The activation function can affect the stability of the training and smoothness
properties of the output. The activation of the output layer may differ from that of the
hidden layers in order to constrain properties of the output such as the range of possible
values. The learning rate is a critical parameter that affects the convergence of the
optimization algorithm. It is possible to schedule changes in the learning rate after a
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set number of iterations. A common LR schedule consist in periodically decreasing the
learning rate, to guide the optimization into the correct minima of the loss function.

A possible problem that may affect training is vanishing or diverging loss function
gradients. To help prevent this, it is important that the values passed to the activation
functions belong to an interval close to [—1,1], which is where the activations are
the most non-linear. One way to achieve this is through batch normalization, which
normalizes the input to each activation with respect to the present batch. Specifically,
batch normalization consists in the following steps:

1. Given a set of N training data {z;}, and the corresponding inputs {z;} to the
activation function of a specific node, compute the average p and standard de-
viation o of z:

| X X
_ ) 2 _ — 5.)2
w= -E,l 2 , ot = -E,l(ﬂ zi)° . (2.34)

2. Normalize the activation input:

z; = iR , withe<0 (2.35)

Vo2 +e
so that the new input has zero mean and unit variance over the dataset.

3. Apply the linear transformation:
7 =2+ P (2.36)

and pass 2/’ to the activation function. v and 8 are tunable parameters of the
network, which ensure that the normalized values fall in the optimal range.

In addition to avoid gradient issues, since batch normalization maintains activation
inputs in a constant range, it allows higher learning rates to be used, making train-
ing faster. Batch normalization can be applied even when batching is not used, by
considering the whole training set as a batch.

2.2.2 Neural field representation

One possible application of neural networks is to model physical fields, through what is
called neural field representation. Neural fields have found applications in a variety of
tasks in computer vision, from image synthesis, to volume modeling, scene rendering,
and dynamics reconstruction. One of the most popular applications is the representa-
tion of complex 3D scenes from a small set of 2D projections, using a neural radiance
field (NeRF, Mildenhall et al. 2021), which showed that high-resolution 3D scenes can
be recovered from partial, compressed information.

Following Xie et al. (2022), we define a field to be an m-dimensional physical
quantity defined over a continuous n-dimensional domain. In this context, we restrict
the field to be defined over low-dimensional (typically n € {2,3,4}) spatio-temporal
domains. The field is also of low dimensionality, with m ~ n. A field can be represented
by a function f mapping the coordinates x € R™ of the domain to the corresponding
value y € R™ of the physical quantity. The analytical form of such a mapping may
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be unknown, but it may be approximated by a parametrized function fy(z) of known
form. We define a neural field as a field that is parametrized by a neural network.
The neural networks employed in neural fields are called coordinate-based networks
because their input consists in the continuous coordinates of the field domain, while
the output is the field value corresponding to the input coordinates.

Usually coordinate-based networks are MLPs, with differentiable activation func-
tions, whose parameters are optimized through gradient descent. This is opposed to
other architectures, such as convolutional neural networks (CNNs), which instead rely
on a discretization of the spatial domain into pixels or voxels. The inputs and outputs
of CNNs consists of high-dimensional arrays or matrices of sampled field values. An
advantage of neural fields over the discrete parametrizations is that they scale well
with increasing resolution of the domain size, which is especially important for 3D or
4D domains. Additionally, the continuous parametrization provided by neural fields
can be sampled at any point of the domain, instead of being restricted to the pixel
grid, granting smooth and correct interpolation.

Training a neural field. The optimization of a neural field generally consists in
the iteration of the following steps, which are schematized in Figure 2.7:

1. Sample the coordinates of the input domain and feed them to the network to
obtain the corresponding sampled field values.

2. Apply a measurement operator (or forward map) that estimates observable quan-
tities from the samples of the reconstructed field.

3. Compute a loss function based on the distance between the estimated observables
and the observed data.

4. Optimize the network parameters through backpropagation so to minimize the
loss function.

After training, the network can be sampled on a set of domain points, typically denser
than those sampled during training, to evaluate the recovered field. Training a neural
field is equivalent to the standard optimization of a parametrized function. It differs
from traditional training because no training set is involved, making the algorithm
completely unsupervised. Therefore in this context the terms “training” and “opti-
mization” can be used interchangeably. The VLBI dynamic imaging algorithm that
is presented in Chapter 4, and applied in Chapter 5, relies on a neural field to model
the flux density distribution in the video or image of the source. In that case, the in-
put domain consists of two linear spatial coordinates (right ascension and declination)
and one time dimension, while the modeled field consists of the total intensity flux,
the fractional linear polarization, the electric vector position angle and the fractional
circular polarization. The measurement operator consists of a two-dimensional spatial
Fourier transform, sampled in correspondence with the (u, v)-coverage of the observed
data, while the loss function contains the x2 distance between observed and estimated
data products.

Spectral bias and positional encoding. Even though, coordinate-based neural
networks are, in principle, universal approximators of high expressivity, when initial-
ized to random distributions and optimized with gradient descent, they are biased
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Figure 2.7: Neural field training. Diagram of the components of a neural field and the
steps required for its training.

towards outputting low-frequency functions (Rahaman et al. 2019). This property
is called spectral bias and arises because the network learns the low-frequency com-
ponents of the output faster than the high-frequency ones. This property has been
demonstrated in the limit of an infinitely wide, fully-connected, neural network, by
proving that training the network with gradient descent is equivalent to performing
a kernel regression (Lee et al. 2018; Jacot et al. 2018). In computer vision, where
most applications involve high-resolution natural images, spectral bias is often an un-
desirable property. Instead, in the field of VLBI imaging, where the ill-posed inverse
problem of image reconstruction requires additional prior information, spectral bias is
often useful to provide implicit regularization of the image.

It is possible to overcome spectral bias and enable MLPs to output high-frequency
function. This may be achieved with positional encoding of the input coordinates,
which consists of mapping each coordinate to a higher-frequency function through a
Fourier feature mapping (Vaswani et al. 2017). The higher frequency of the input then
enables the possibility to achieve higher frequencies in the output too (Tancik et al.
2020). Mathematically this is performed by applying the transformation:

v(z) = [sin(2°7z), cos(2°m), .. ., ... ,sin(2Lrx), cos(2L_17m:)] (2.37)

to every input coordinate x and feeding the result to the first layer of the network. L
is the degree of the positional encoding and sets the high-frequency limit of the output
field. Figure 2.8 shows the effect of positional encoding of the input coordinates for
different neural field applications. The images clearly show that Fourier features allow
the output field to achieve higher resolutions.

2.3 Optical flow

The development of imaging algorithms capable of recovering high-resolution videos of
variable radio sources prompts the employment of advanced motion analysis techniques
to study the dynamics of the evolving plasma. Omne possible approach is to track
kinematics by computing the optical flow (OF), that is a two-dimensional vector field
which quantifies the projected apparent motion of visual elements between consecutive
frames (Gibson 1950).

The optical flow is based on the assumptions of brightness constancy and infinites-
imal motion between frames, meaning that the brightness of each pixel is conserved in
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Figure 2.8: Positional encoding. The first rows shows the output neural field models when
no Fourier features are applied, while the second shows the result of the application of Fourier
features. Figure adapted from Tancik et al. (2020).

the infinitesimal displacement undergone from one frame to the other. For two adja-
cent frames I(x,y,t) and I(x,y,dt) and an optical flow velocity field (u(z,y),v(z,y)),
the first assumption requires the brightness of a displaced pixel to remain constant:

I(z + udt,y + vét, 0t) = I(x,y,t) , (2.38)

while the second allows to approximate the equation to its first-order Taylor expansion,
leading to:

Lu+Iy+1,=0, (2.39)

where I, = %, I, = g—;, I, = %. Solving this equation for every pixel (z,y) of
the frame, requires additional constraints since the unknowns are twice as much the
equations.

Constraints can be provided by regularization of the optical flow field, for example
by assuming a continuous OF from pixel to pixel. This is implemented in the Horn-
Schunck (HS) algorithm (Horn and Schunck 1981), which redefines the OF recovery

problem in terms of the minimization of the functional:

E(u,v) =Y (Lu+Iu+ L)+ X2 (V] ? + (| Vo]]?) (2.40)

T,y

where the first term enforces brightness constancy, while the second, weighted by the
positive parameter o, favors smoothness, by aiming to minimize the gradients Vu,
Vv of the optical flow components. The optical flow that minimizes the functional is
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found by the iterative solution:
S gk L (Iu* + I,o% + I)
a2+ 12+ 12
S L (Lu"* + Lok + L)
a?+ 12+ 12

(2.41)

)

where 4*(z,y) and v¥(x,y) are the averages of u and v in the neighborhood of the
pixel (z,y).

Thanks to the smoothness assumption, the main advantage of the Horn-Schunck
algorithm is that it is able to provide a good estimate of the optical flow for all pixels in
the image, even in areas of homogeneous brightness (VI ~ 0). However, since it relies
on the assumption of small motion between frames, it performs poorly in recovering
large displacements.

This can be solved by implementing HS into a multi-scale approach that recon-
structs a progressively finer optical flow field (Meinhardt-Llopis et al. 2013). This
approach starts by computing a sequence of progressively downsampled versions of
the video frames. The optical flow is initialized to 0 and the HS algorithm is applied
to the coarsest pair of frames. The resulting optical flow is then used as initializa-
tion for the optical flow computation in the next finer pair of frames, until the finest
resolution is reached.

A multi-scale implementation of the Horn-Schunck algorithm was employed in
Chapter 4 to estimate the optical flow in a video reconstruction of multi-epoch obser-
vations of blazar 3C 345. In this application, the optical flow allowed to measure the
apparent velocity field of the plasma moving in the relativistic jet.
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Evolution of a relativistic jet

Adapted from

Evolution, speed, and precession of the parsec-scale jet in
the 3C 84 radio galaxy

M. Foschi, J. L. Gémez, A. Fuentes, 1. Cho,

A. P. Marscher, S. Jorstad

Astronomy and Astrophysics, 696, A17, (2025)

Abstract

We present high-resolution images of the radio source 3C84 at 43 GHz from 121
observations conducted by the BEAM-ME monitoring program between 2010 and
2023. Imaging was performed using the recent forward modeling imaging method
eht-imaging and achieved a resolution of 80 pas, which is a factor of ~2-3 better
than traditional imaging methods such as CLEAN. The sequence of images depicts
the growth and expansion of the parsec-scale relativistic jet in 3C 84; it clearly shows
a complex internal structure with bending in the jet and changes in its launching
direction and expansion speed. We report measurements of the expansion speed over
time, which show that the jet goes through three regimes, marked by the start and
end of a hot spot frustration phase. The high resolution of the images also allowed
us to measure the projected launching direction as a function of time, and we find an
irregular variation pattern. Our results confirm previous studies of the morphological
transition undergone by 3C 84 and provide quantitative measurements of the jet’s
kinematic properties over a decade-long timescale.
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3.1 Introduction

Some supermassive black holes at the center of galaxies generate collimated jets of
ionized relativistic particles, which are accelerated by the strong magnetic fields sur-
rounding the black hole and the accretion disk. These highly energetic and luminous
jets propagate through the host galaxy and beyond, interacting with the interstellar
(ISM), intergalactic, and intracluster media (ICM). Temperature, density, and pres-
sure differences between the plasma in the jet and the surrounding medium influence
the jet’s expansion by altering its shape and profile and by affecting its direction and
expansion speed.

The relativistic jet in the radio galaxy 3C84 (NGC 1275), located in the Perseus
Cluster, is a valuable source of information about the interactions between the ICM
and the parsec-scale jet. NGC 1275 is at the center of a strong cooling flow cluster,
where large amounts of inflowing gas are reheated by the galaxy’s active nucleus. The
galaxy also displays bright X-ray emission (Forman et al. 1972), and observations
by Chandra have shown pairs of opposed bubbles in the ICM located at different
distances and directions relative to the 3C 84 radio source (Fabian et al. 2003). A
proposed explanation for these structures is that they are inflated by a precessing and
restarting of a jet—counterjet pair (Dunn et al. 2006).

3C84 is also a variable radio source (Dent 1966; Pauliny-Toth and Kellermann
1966) and has been observed since the 1950s through multiple Very Long Baseline In-
terferometry observations at both millimeter and centimeter wavelengths. Giovannini
et al. (2018) and Savolainen et al. (2023) provide a historical overview of the radio
observations of 3C 84, of which we give a short summary here. The source presents
various lobe-like structures south and north of the core, on parsec (e.g., Walker et al.
2000; Asada et al. 2006) to kiloparsec (Pedlar et al. 1990) scales, which may indicate a
repeatedly restarting jet. Observations at the parsec scale from the 2010s have shown
the presence of a dim radio lobe (C2; Nagai et al. 2010) and a bright radio lobe (C3),
the latter of which is connected to the core (see the top-left panel in our Figure 3.2;
Nagai et al. 2014). The C2 component was ejected in the early 1960s during a pe-
riod of increasing brightness that lasted until the mid 1980s, before dropping in the
1990s and early 2000s (Nesterov et al. 1995). C3 was emitted around 2003 (Suzuki
et al. 2012; Nagai et al. 2017) during a second period of high brightness. While C3
propagated from the core through a limb-brightened structure, the propagation of C2
happened through a jet with a centrally peaked morphology. In more recent years,
higher-resolution observations have been able to resolve the internal structure of the
parsec-scale jet in 3C 84. Giovannini et al. (2018) presented results at 22 GHz from a
global array of ground antennas plus the space antenna RadioAstron (Kardashev and
Khartov 2013). The reconstructed image clearly shows strong limb-brightening and a
wide opening angle near the core, followed by a quasi-cylindrical jet profile. The jet
ends with a bright spot with surrounding diffuse emission. Giovannini et al. (2018)
suggest that the cylindrical profile may be due to the jet connecting C1 to C3 being
embedded in a uniform-pressure cavity carved by past activity of the jet. This is sup-
ported by other observations by RadioAstron at 5 GHz (Savolainen et al. 2023), which
show that the C2 and C3 components are both surrounded by low-intensity emission
from a cocoon-like structure. Savolainen et al. (2023) discuss that, in the interaction
between the C3 structure and the ISM, energy is transferred to the ISM, heating the
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gas that forms the cocoon. They also suggest that the cocoon-like structure could be
caused by the jet moving through a multiphase medium consisting of gas clouds of dif-
ferent sizes and densities. The embedding of the jet in a clumpy medium is supported
by results from Nagai et al. (2017) and Kino et al. (2018) and Kino et al. (2021). In
particular, Kino et al. (2021) analyzed 43 GHz images of 3C 84 from the Very Long
Baseline Array (VLBA) from 2012 to 2020. They tracked the motion of a hot spot
and, in 2016-2017, observed a year-long frustration phase, during which the hot spot
followed a circular trajectory after reaching the edge of C3, rather than propagating
farther through the jet. They attribute this event to a collision between the head
of the jet and a compact dense cloud. After the collision, the jet breaks through the
cloud, deviating its expansion direction to the west and transitioning from an FR II- to
FR I-class radio lobe morphology. However, despite the significant number of studies,
observations of 3C 84 have provided either repeated images of the jet at low resolution
(Kino et al. 2018; Kino et al. 2021) or hard-to-repeat single-epoch images at high
resolution (Giovannini et al. 2018). This hinders a proper study of the kinematics of
the plasma in the jets and the dynamics of the jet expansion.

In this work we present a reimaging of all 121 VLBA observations of 3C 84 at 43
GHz obtained by the BEAM-ME monitoring program (Jorstad and Marscher 2016)
from 2010 to 2023 obtained using the regularized maximum likelihood (RML) imaging
method eht-imaging (Chael et al. 2018). With eht-imaging, we obtained images of
the parsec-scale jet at a resolution of ~80 pas. This is ~2-3 times higher than the
nominal beam used to convolve CLEAN images, whose average across different epochs
is (280, 150) pas. RML methods produce super-resolved images by incorporating
reasonable prior assumptions that regularize the image. These methods have proven
to achieve higher fidelity at super-resolution than CLEAN (see, e.g., Fuentes et al.
2023). Thanks to the combination of the super-resolving power of RML methods and
the constant monitoring by the BEAM-ME program, we were able to observe, for the
first time, the evolution of the overall and internal structure dynamics of the parsec-
scale jet, over a 12-year period. The images we present resolve the hot spots and the
internal structure of the jet, as well as the connection between the limb-brightened
structure and the core. At this resolution, it is also possible to resolve the front of the
jet head, discerning the expansion of the jet from the motion of components through
the jet. We considered the source redshift, z, to be 0.0176 (Strauss et al. 1992). In
continuity with previous publications on 3C84, we assumed a A cold dark matter
cosmology with Hy = 70.7 km s~! Mpc™!, Qp = 0.27, and Q4 = 0.73; this means
that 1 mas in the image plane corresponds to 0.35 pc.

The chapter is organized as follows: in section 3.2 we provide details of the observed
data and explain the method used to image them. In section 3.3 we present the imaging
results, provide a quantitative estimate of the jet’s speed and direction, and discuss
the evolution of the jet in the context of previous observations of the source. We
summarize and discuss our results in section 3.4.
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3.2 Data and imaging

3.2.1 Observations

We analyzed data from the BEAM-ME monitoring program conducted by Boston
University (previously named VLBA-BU-BLAZAR)!, which observes multiple gamma-
ray blazars and radio sources using the VLBA at 43 and 86 GHz (Jorstad and Marscher
2016). We focused on total intensity observations of the radio source 3C84 in the
Perseus cluster, at 43 GHz, conducted on a roughly monthly basis from late 2010 until
early 2023, resulting in a total of 121 individual epochs.

The BEAM-ME data are already fully calibrated and self-calibrated to the CLEAN
images provided in the archive. However, to avoid any bias from possible residual
calibration errors or from the self-calibration, we chose to run the first imaging step
using only closure quantities. The archival data were already time averaged with a 30
s interval, so no additional time averaging was performed before imaging.

3.2.2 Imaging procedure

The data were imaged using eht-imaging, a forward modeling imaging method for
VLBI observations (Chael et al. 2018). This method defines the image as a discrete
square matrix of flux density values, I = {I;;}, and optimizes these values to minimize
the objective function:

J(I)=> apxp(I. V)= BrSr(I), (3.1)
R

D

where the first sum runs over the reduced x? of different data products D computed
from the image I and the observed data V', while the second sum runs over various
regularizers R that impose additional correlations among pixel values, thus constrain-
ing the possible solutions to the ill-posed problem of VLBI imaging (EHTC 2019d).
The coefficients ap and Sr that weight the data terms and the regularizers are hy-
perparameters of the method.

The imaging procedure followed these steps:

1. Tteratively apply eht-imaging’s optimization step, using only log closure ampli-
tudes and closure phases as data products in the objective function. Stop the
optimization when the reduced x? of both data products decreases by less than
2% in a single step.

2. Perform self-calibration of amplitudes and phases to the obtained image, to
correct potential residual station-based errors.

3. Reapply eht-imaging’s optimization steps, this time using both complex visi-
bilities and closure quantities as data products in the objective function. Stop
the optimization when the x? of both data products decreases by less than 1%.

The eht-imaging optimization step mentioned in point 1 and 3 consists of alternating
between a series of quasi-Newton gradient descent steps and blurring of the resulting
image with a Gaussian kernel with a full width at half maximum (FWHM) equal to 1.5
times the nominal resolution of the array (~150 pas). The blurring step prevents the

Thttps://www.bu.edu/blazars/BEAM-ME. html
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optimizer from getting trapped in local minima of the objective function. The images
obtained with this procedure provide a good fit to the data, with an average reduced
visibility x? of 1.61. We note that, in most cases, the images obtained after step 1
are very similar to those obtained after step 3, meaning that the closure quantities
are sufficient to constrain the images and that self-calibration only provides small
refinements to the final images. The gains obtained from the self-calibration step were
negligible, which was expected since the archival data were already self-calibrated
using CLEAN imaging.

Field of view. The field of view was increased linearly from 5.1 mas for the earliest
epoch to 13.2 mas for the latest one, following the growth of the emitting region in
the jet, as seen in the archival CLEAN images. Accordingly, the number of pixels was
increased from 170 to 440, while the pixel size remained constant at 30 pas?.

Initialization image. The initialization image for the optimization process was
chosen to be an elliptical Gaussian with major axis rotated 6° clockwise from the
north, with (FWHM,, FWHM,) values ranging linearly from (385, 1375) pas to (910,
3250) pas to match the average direction and increasing dimensions of the jet. For
a few epochs (specifically, from April 30, 2022, to December 6, 2022), the optimizer
would not converge if initialized to a Gaussian. We attribute this to the combination
of a suboptimal coverage and a complex jet morphology, which could not be well
approximated by a Gaussian. In these cases, we initialized the optimizer to the CLEAN
image provided by the BEAM-ME program, blurred with a Gaussian kernel of FWHM
equal to twice the nominal resolution of the array. We tested the effect of initializing
with the CLEAN image instead of a Gaussian on the other epochs and found that the
final image was not noticeably affected by the choice of prior image.

Regularizers. We made minimal use of regularizers, since the (u, v)-coverage of the
array is sufficiently dense. In step 1 of the imaging procedure, the total flux of the
image cannot be constrained by closure amplitudes, so we used a flux regularizer to
constrain it to the maximum amplitude of the shortest baseline. In both steps 1 and
2, we used the entropy regularizer to constrain the emission in the center of the image
and the ¢; regularizer to encourage sparsity, since significant portions of the images
were expected to have no emission. The exact regularizers’ weights, along with other
imaging parameters, are reported in Table 3.1.

Images. Imaging results from all epochs are presented in Figure 3.1 and in the corre-
sponding movie (https://www.aanda.org/articles/aa/olm/2025/04/aa53406-24/
aab3406-24.html), while Figure 3.2 shows the comparison between CLEAN and
eht-imaging images for a few selected epochs. The eht-imaging images we obtained
are consistent with the CLEAN images provided by the BEAM-ME program, but in
higher resolution. This enables a more precise detection of the outlines of the bright
limbs and the edge of the jet head, as well as the resolution of intra-jet features and
the jet orientation at the subparsec scale.
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Figure 3.1: Evolution of 3C 84 over 12 years. Radio source 3C 84 as observed from 2010
to 2023 by the VLBA at 43 GHz and imaged with eht-imaging. The black vertical lines
mark the dates of the observation epoch corresponding to each image. The time evolution
of the source is shown in the movie available at https://www.aanda.org/articles/aa/olm/
2025/04/aab3406-24/2aab3406-24 . html.
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Figure 3.2: CLEAN and eht-imaging comparison. Comparison between images of radio

source 3C84 from VLBA observations at 43 GHz, obtained with the CLEAN (left) and
eht-imaging (right) imaging methods.
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Image parameters Values

pixel size 30 pas

number of pixels 170 - 440

field of view 5.1 - 13.2 mas

Observation parameters

added systematic error 0.5 % (of visibility amplitudes)
time averaging 30s

Prior parameters

prior image Gaussian / CLEAN image
Gaussian fwhm (maj axis) 1375 - 3250 pas

Gaussian fwhm (min axis) 385 - 910 pas

Gaussian orientation -6°

Optimization parameters

max N iterations 200
data term weights (steps 1 - 2)

vis 0-1
amp 0-1
cphase 1-1
logcamp 1-1
regularizer weights (steps 1 - 2)

flux 50 - 10
entropy 01-1
4y 0.1-10

Table 3.1: Imaging hyperparameters used in the eht-imaging pipeline.

3.3 Jet analysis

The sequence of jet images in Figure 3.1 reveals various features of the jet evolution.
In the first images (corresponding to epochs in late 2010), the jet presents clear limb-
brightening, with the two limbs originating from an unresolved core and undergoing a
slight counterclockwise bending. The limb-brightened structure extends until the core,
to which it connects at a high opening angle, confirming the analysis from Giovannini
et al. (2018), which resolved the limb structure at a distance of 0.03 mas (or 350
gravitational radii de-projected). Over the years, the limb-brightening persists as the
jet increases in length, reaching ~4 times its initial size. A dim emission feature (C2)
is evident in the bottom-right part of the jet in 2011-2013. From 2014, C2 gradually
becomes dimmer and more elongated, as if dragged by the expanding C3 component.
A single localized bright spot from C2 is still visible in 2015, before the component
disappears into the diffuse emission on the right side of the jet, barely visible above the
noise level until 2019. A detailed analysis of the C2 component is beyond the scope
of the present chapter, but future works may extract information about the energy
exchange associated with its disappearance.

The jet launching direction changes over the years, slowly rotating counterclock-
wise from 2011 to 2015, slowly rotating back to the initial direction from 2015 to 2016,

2The images are cropped with respect to the original field of view, to be displayed in the most
effective way.
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maintaining the same direction during 2017-2018, then drastically rotating clockwise
from 2019 to 2022. From 2019, the core undergoes a severe twisting due to the clock-
wise rotation, which complicates its structure, while in 2017 a secondary component
appears west of the core and persists until the end of the considered time window.
A complex picture of the core was already described by Punsly et al. (2021), who
modeled the core structure with two or three components aligned in the east-west
direction. The 2019 twist is also reported by Park et al. (2024b), who describe the
ejection of a knot east of the core (Paraschos et al. 2022) and track its motions as
it abruptly changes direction toward the south. Park et al. (2024b) suggest that the
knot’s deflection may be due to the jet colliding with a dense clumpy cloud. In our
images, however, we do not see the ejection of an individual knot, but rather we ob-
serve emission appearing west of the core because of the twisting of the jet rails. This
scenario also explains the apparent southward deflection of the knot, which moves
along the preexisting jet structure.

Various components can be tracked moving along the jet (Hodgson et al. 2021),
notably a bright spot is seen approaching the head of the jet, “bouncing” against it
and then dissipating, in the time span between late 2015 and early 2017. Our results
confirm the hot spot’s counterclockwise trajectory reported by Kino et al. (2021).
However, our images show that the hot spot appears at the end of 2015 and dissipates
at the beginning of 2018 as the jet pierces through the lobe. The 2015 hot spot’s flip
and the 2018 hot spot’s breakout reported by Kino et al. (2021), should be attributed
to a component mismatch caused by insufficient resolution.

At the end of 2010, the jet presents a straight morphology. However, a lobe begins
to form in late 2011 and undergoes a significant expansion from early 2013 to early
2017. The inflation coincides with a slowdown in the jet’s expansion velocity, followed,
in 2018, by a burst through the inflated bubble and an increase in the expansion speed.
This confirms the abrupt morphological transition from an FR II- to FR I-class radio
lobe observed by Kino et al. (2021), to which we add a gradual opposite transition
from FR I to FR II observed from 2010 to 2013. From late 2020 to the end of the
considered epochs, some portions of the jet appear darkened. This could be caused by
a lower local emissivity, a change in the viewing angle, or the presence of an absorbing
foreground. With respect to this last hypothesis, it should be noted that 3C84 is
likely surrounded by an accretion disk associated with ionized gas, which absorbs and
obscures the inner section of the counterjet (Walker et al. 2000; Fujita and Nagai
2017).

Some of our images also show the presence of an emission region north of the
core. From 2011 to 2013 we detect a persistent emission 0.5 mas north-west of the
core, while from 2017 we detect a more diffuse emission 2-3 mas north of the core,
coinciding with the N1 component detected by Fujita and Nagai (2017). However,
in some epochs, the emission cannot be detected above the noise level of the image
background. Whenever the northern emission is detected in the CLEAN images, it is
also visible in the corresponding images from eht-imaging which proves the ability
of eht-imaging to recover diffuse structures. We consider the northern emission to
be produced by the counterjet of the radio source, partially obscured by the accretion
disk. If both the NW and N emitting regions were to be attributed to the counterjet,
it would mean that the latter also presents a winding and irregular profile like its
southern counterpart. However, the emission that we detect is diffuse and barely
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above the noise level of the images. Because of this, we are not able to use it to
constrain the core shift and we chose not to include further analysis of the counterjet
in this work.

3.3.1 Feature extraction

Traditionally, VLBI images of relativistic jets have been analyzed by fitting Gaussian
components to the bright features of the jet and tracking the motion of these com-
ponents over time, which is known as model fitting. This was the best approach to
analyzing jet dynamics when the resolution was not sufficient to resolve features in-
side the jets. However, new super-resolution imaging methods such as eht-imaging
now allow us to resolve intra-jet features (see Janssen et al. 2021; Fuentes et al. 2023;
Savolainen et al. 2023; Park et al. 2024a), making it unnecessary to approximate and
oversimplify jet images using a set of Gaussians. In these cases, model fitting is not
an adequate tool. Instead, case-by-case methods should be chosen, depending on the
features visible in the image. Because of the winding and evolving jet structure ob-
served in our images of 3C84, we characterized the jet by measuring its maximum
radial expansion from the core (section 3.3.5) and by tracing the profiles of the two
bright limbs, from which we computed the overall jet outline and the jet launching
direction (section 3.3.4).

3.3.2 Alignment

To compare features extracted from images at different epochs, it is crucial that the
images are properly aligned. To align the images with respect to the jet core, we
applied the following steps:

1. Locate the brightest pixel in each image. In a few cases the brightest pixel is
not located in the core, but in the C3 component. In those cases the brightest
pixel is replaced by a randomly chosen pixel from the core.

2. Apply a circular mask of 1 mas radius, centered in the brightest point, setting
to zero every pixel outside the mask.

3. Shift each image by the amount that maximizes the cross-correlation between
the masked image and the masked image of the previous epoch.

This procedure was effective for correctly aligning all epochs except those between
November 3 and 6, 2021. For those epochs, a simple cross-correlation alignment was
not effective because of the rapid twisting of the core region, so an additional shift,
linearly spaced from 35 pas up to 246 pas, was applied after the cross-correlation shift.

3.3.3 Edge fitting

The most straightforward way to characterize the features present in the jet is to
outline its edges by tracking the position of the two bright limbs. For this purpose, as
shown in Figure 3.3, we considered circular sections of the image, centered around the
jet core. We find the two highest emission peaks along each of these profiles and assign
their positions to the two bright edges, creating two sets of points outlining each edge
(blue points in Figure 3.3). In some sections, the position of one or both limbs could
not be detected using this method. In such cases, the limb position was determined
by interpolating between the positions in the preceding and following sections. The
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overall jet outline (white points in Figure 3.3) was determined by the set of midpoints
of the distance segments between each point of one limb and the other limb.

3.3.4 Jet launching direction

The local jet direction at each section of the jet is defined by the vector tangent to the
jet outline curve. We determined the initial jet launching direction by averaging the
tangent vectors corresponding to the segments of the jet outline within 90 pas from
the core, to avoid resolution-induced biases. The standard deviation associated with
the average was assigned as the error on the measured direction. The left panel in
Figure 3.4 shows the angle corresponding to the jet launching direction as a function of
time. The points in blue represent the measured direction from each epoch, while the
orange lines indicate the average and standard deviation of a Gaussian Process (GP)
regression to the data. The right panel in Figure 3.4 shows the average jet launch-
ing direction from the GP regression with the angle plotted in angular coordinates
for a more intuitive representation of the directional shift. The plot shows that the
orientation of the jet within the first 0.03 pc from the core undergoes several irregular
oscillations. We observe a 20° oscillation from the beginning of 2011 to the end of 2012,
a 40° oscillation from early 2013 to early 2017, a 10° shift until early 2018, followed
by a clear 60° shift until 2021 and a constant trend in late 2021 and 2022. The overall
change in the jet’s orientation spans 80 degrees.

A change in the direction of the jet has been proposed by Dunn et al. (2006) to
explain the presence of X-ray holes at different orientations with respect to the core
on kiloparsec scales. They suggest two possible causes for jet precession: a binary
black hole system would make the jet of the primary black hole undergo a regular
precession (Katz 1997), while an instability in the accretion disk or a misalignment
between the black hole spin and the accretion disk axis could cause the disk to warp,
resulting in a stochastic jet precession (Pringle 1997). However, they estimate a pre-
cession timescale on the order of 107 years. Here instead we observe a drastic irregular
variation in the jet’s direction over a timescale of a few years. It is possible that the
jet in 3C 84 undergoes precession cycles over different timescales. It should also be
noted that, since monitoring of 3C 84 began, at least two epochs of jet activity, with
different properties and directions, have been observed, one from the 1960s related to
the ejection of C2, and the other from the 2000s, associated with the expansion of C3
and the direction oscillations reported above. Therefore, the presence of X-ray holes
at different orientations could also be due to different activity phenomena associated
with different jet orientations and properties.

3.3.5 Jet length and expansion speed

To measure the jet length, we first computed the longitudinal intensity profile of
the jet by identifying the highest intensity value of the image along circular sections
centered on the core. We defined the jet length, as projected in the image plane, as
the maximum distance from the core reached by the head of the jet. The head of the
jet was identified as the point where the longitudinal jet profile dropped below the
average noise floor, which was computed as the mean image value, in a portion of the
image not covered by the jet. The threshold value was adjusted for epochs from June
2016 to January 2017 to accommodate for a significantly higher noise floor and for
epochs from May to September 2021 to take into account the darkening of portions
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1.25 mas

Figure 3.3: Edge fitting in 3C 84. Example of the fitted edges and jet direction for the jet
in epoch 21-07-2021. Dark blue points represent fitted edge points, while light blue points
represent interpolated edge points. White points represent the jet outline. A subset of the
circular sections used to detect the edge points is shown as thin white lines.
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Figure 3.4: Jet precession in 3C 84. (Top) Details of the core region in 3C84 for six
selected epochs. (Bottom left) Angle of the jet launching direction as a function of time. The
angle is measured east of north. The measured direction from each epoch is shown in blue
and the average of a GP regression to the data in orange. The orange shading indicates the 1
sigma (dark shade) and 3 sigma (light shade) uncertainty from the GP regression. (Bottom
right) Average direction from the GP regression, plotted in angular coordinates for a more
intuitive representation of the direction change. Red corresponds to earlier epochs and blue
to later epochs.

of the jet. The darkening appears in various portions of the jet in later epochs, but it
affects the measurement of the jet length only in mid 2021 because a darkened portion
coincides with the jet head, as shown, for example, in the lower panel of Figure 3.2 or
in Figure 3.3. The uncertainty associated with the jet length measurements was taken
as the pixel size used in the imaging process (30 pas), under the assumption that the
limited resolution is the main source of uncertainty for this measurement.

Figure 3.5 shows the jet length as a function of time. As visible in the online movie,
three different trends are evident. Until the end of 2012 the jet length increases linearly,
from the beginning of 2013 to the beginning of 2017 the increase occurs at a lower
rate, and finally, from 2017, the expansion occurs at a higher speed than the initial
one. A possible explanation for the speed change, is that the jet propagates across
a medium with different densities, possibly shaped by past activity of the jet. For
each of these three expansion regimes, we performed a linear fit to the jet length to
compute the expansion velocity. The residuals of the linear fits are shown in the lower
panel of Figure 3.5 and do not show significant trends, meaning that the expansion in
each regime was indeed occurring at a constant speed. From the measured velocities
projected in the image plane, we computed the true de-projected velocities of the jet
front, accounting for special relativistic effects and assuming an inclination of § = 18°
(Tavecchio and Ghisellini 2014).

Table 3.2 reports the values of the apparent speed in the image plane and the
de-projected physical speed. The reduced x? values of the linear fits are also reported
in Table 3.2 and show that the uncertainties are properly estimated for the first two
regimes, while they might be slightly underestimated in the last case. This might be
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Figure 3.5: Jet length in 3C 84. (Top) Measured jet length as a function of time (points)
and piece-wise linear fit (continuous line). Uncertainties on the measurements are not shown
because the error bars are smaller than the size of the points. (Bottom) Residuals of the
linear fits.

due to some portions of the jet being obscured in the latest epochs, which causes a
higher uncertainty in the detection of the jet head. Previous estimates of the speed
of the 3C84 jet head, in our considered time period, measured an average apparent
speed of 0.27 £ 0.02 ¢ between 2007 and 2013 (Hiura et al. 2018), and an average
apparent speed of 0.33 between 2003 and 2020 (Kino et al. 2021). Weaver et al. (2022)
measured the apparent speed of the components in 3C84 in the period from 2010
to 2019, through model fitting. The speed of the components is not necessarily the
same speed of the jet expansion, but it can be useful to compare the two. In the
period between 2010 and 2012, the apparent speed of components C2, C3, and C6 are
0.27 ¢, 0.21 ¢, and 0.34 c, which match our estimate of the expansion speed of 0.29
c. In the period between 2013 and 2015, Weaver et al. (2022) reported a speed of
0.84 ¢ for component C9, matching the observation of the hot spot frustration, which
moves at a higher speed than the jet expansion. Finally, from 2016 to 2019, they
report component C10 moving at a speed of 1.38 ¢, indicating a drastic increase in
velocity, which matches our measured expansion speed increase. Regarding the jet
expansion after 2017, Kam et al. (2024) report measurements of the velocity of four
subcomponents propagating from C3 after the jet breaks through the inflated bubble.
In the time period between 2017 and 2022, they measure apparent speeds between
0.46 ¢ and 1.35 c, indicating that short-lived components inside the jet may travel
faster than the jet front itself.
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time period apparent speed apparent physical x2

(pas/day) speed (c) speed (c)
Nov 2010 - Dec 2012  0.71 £0.03 0.29 £0.01 0.50 £ 0.02 1.7
Dec 2012 - Jan 2017  0.549 £ 0.009 0.228 £0.004 0.434 £0.007 0.81
Jan 2017 - Feb 2023  1.47 £0.02 0.61 £0.01 0.69 £ 0.01 7.0

Table 3.2: Jet front expansion velocity of 3C 84. Velocities computed from the linear
fit for each of the three expansion regimes. We report both apparent velocities projected in
the image plane and the corresponding physical velocities, assuming an inclination angle of
0 = 18°.

3.4 Conclusions

In this chapter we present and discuss the parsec-scale structure of 3C84. We show
images from 121 VLBA observations at 43 GHz from late 2010 to early 2023, and
we performed a quantitative kinematic analysis of the jet’s expansion and precession.
Studying the restarted jet in 3C 84 is important to understanding how the ISM inter-
acts with the jet, affecting its direction, morphology, and propagation speed, and how,
in return, the ISM is affected by the irregular jet activity.

Thanks to the super-resolution enabled by the eht-imaging imaging method, our
images resolve the internal structure of the jet, its profile and edges, and different
bright components moving inside the jet. The images were obtained using a standard
iterative procedure in eht-imaging, mostly relying on closure quantities to avoid bias
from residual calibration errors and with minimal use of regularizers. The images were
later aligned with respect to the jet core by maximizing the cross-correlation between
subsequent images.

We confirm the presence of a limb-brightened structure that connects to the unre-
solved core at a wide opening angle (Giovannini et al. 2018). In the initial observations,
a dim component (C2) was still present in the bottom-right side of the jet but dis-
appeared completely around 2019. During the 12-year period of observations, the
restarted jet grew in length, expanding toward the south. In the most recent images,
starting from 2020, some portions of the far side of the jet appear darkened. The
direction at which the jet emerges from the core varies across the years. We mea-
sured the jet direction within 0.03 pc of the core and observed it undergoing various
irregular oscillations, spanning an overall angle of 80°, including a fast 60° orientation
change from 2019 to 2021. The parsec-scale jet gradually transitioned from an FR I-
to an FR II-like morphology from 2010 to 2013, while in 2017 it abruptly transitioned
back to an FR I-like morphology. We measured the expansion speed of the jet head
(C3 component) and observed three separate regimes of linear expansion. The first
regime corresponds to the FR I — FR II transition, the second to the inflation of the
jet head in the FR II state, and the third to the expansion following the FR II — FR I
transition. We measure apparent speeds of 0.2940.01 ¢, 0.22840.004 ¢, and 0.614+0.01
¢, respectively. We confirm previous observations of a hot spot frustration during the
epochs preceding the jet’s abrupt FR II — FR I transition (Kino et al. 2021). The
hot spot is observed following a counterclockwise trajectory around the lobe of the jet
head. However, contrary to prior observations, we distinguish the frustrated hot spot
from other components present before 2016 and after 2017. In some of our images,
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especially from 2017, we detect a diffuse emission north of the core, which we interpret
as being produced by the counterjet that is partially obscured by the accretion disk.
However, the emission is barely above the noise level of the images, so we did not rely
on it for the analysis of the jet features.

Overall, our results indicate that the jet is propagating in an irregular ISM that
is characterized by the presence of clumps of denser material, which affects the jet’s
speed, direction, and morphology. The presence of localized absorbing gas in front of
the jet may also be an explanation for its local darkening, which alternatively may
be due to an increase in the viewing angle or a change in emissivity. The observed
evolution of the parsec-scale jet suggests that the presence of radio lobes may be a
temporary stage in the evolution of a jet, caused by density differences in the ambient
medium. In 3C84 this seems to be confirmed by the presence of ancient lobes at
multiple scales. The limb-brightening suggests a possible spine-sheath structure, where
the inner part of the jet moves at a higher speed than the outer part, and could explain
the bright gamma-ray emission observed by Abdo et al. (2009). Limb-brightening
could also be caused by a higher number of emitting electrons, which are accelerated
in the interaction between the jet and the ISM (Stawarz and Ostrowski 2002). Park
et al. (2024a) also suggest that a higher emissivity in the jet boundary layer, due to an
interaction with a dense medium, may be at the origin of the observed limb-brightening
in NGC315. Possible reasons for the irregular jet precession include an instability in
the disk or a misalignment between the angular momentum of the accretion disk and
the spin of the black hole (Dunn et al. 2006; Pringle 1997), which may cause a warping
of the disk and a stochastic variation in the jet’s direction.

Our results show that by using innovative super-resolving imaging methods, it
is possible to resolve complex features in the jet structure, which were previously
accessible only at higher observing frequencies or with significantly longer baselines.
This marks a change in how jet features can be analyzed, shifting from the fitting of
simple Gaussian components to more specific analyses adapted to the jet morphology.
For example, similar to Park et al. (2024a), our eht-imaging images clearly highlight
the limb-brightening structure, which allowed us to trace the jet edges and precisely
track the changes in the jet direction over time. Future imaging of jet sources with
new imaging methods could uncover additional cases of limb-brightening that were
previously undetectable due to insufficient resolution.
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Abstract

The ejection of collimated and highly relativistic jets of plasma from the vicinity of
supermassive black holes to intergalactic scales is an intrinsically dynamic process
shaped by large-scale magnetic fields. A proper characterization of the turbulent,
magnetized flow of plasma is fundamental for understanding how relativistic jets form
and evolve through the dense intergalactic medium. Until now, the study of jet dynam-
ics has been limited to tracking the motion of unresolved components recovered from
radio-interferometric observations, usually interpreted as shocks traveling downstream
in the jet. Here we present a comprehensive pixel-by-pixel kinematic analysis of the
parsec scale jet in the 3C 345 blazar from 27 years of data. This is enabled by kine,
our newly developed video reconstruction algorithm based on a neural representation,
which is able to process simultaneously all observations available, while learning and
leveraging the spatio-temporal correlations present in the data in full polarization.
Our video reconstruction reveals, in great detail, a highly variable jet that exhibits
non-periodic changes in its launching direction, in contrast to what is suggested by
previous work. The polarization field structure indicates the presence of an evolving
helical magnetic field threading the jet. Additionally, the continuity and high resolu-
tion of our video allows us to characterize the complete two-dimensional velocity field
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associated with the jet plasma evolution, in contrast to previous kinematic studies,
which could only measure the pattern speed of broad components. We find that the
instantaneous speed and degree of polarization of the traveling bright compact features
are of the same order of those of the bulk plasma, indicating that these over-densities
cannot be produced by strong shocks, but most probably they correspond to regions
with increased emissivity in a turbulent flow. Here we present a comprehensive pixel-
by-pixel kinematic analysis of the parsec scale jet in the 3C 345 blazar from 27 years
of data. This is enabled by kine, our newly developed video reconstruction algorithm
based on a neural representation, which is able to process simultaneously all observa-
tions available, while learning and leveraging the spatio-temporal correlations existent
in the data in full polarization. Our video reconstruction reveals, in great detail, a
highly variable jet that exhibits non-periodic changes in its launching direction, in
contrast to what is suggested by previous work. The polarization field structure indi-
cates the presence of an evolving helical magnetic field threading the jet. Additionally,
the continuity and high resolution of our video allows us to characterize the complete
two-dimensional velocity field associated with the jet plasma evolution, in contrast
to previous kinematic studies which could only measure the pattern speed of broad
components. We find that the instantaneous speed and degree of polarization of the
traveling bright compact features are of the same order of those of the bulk plasma,
indicating that these over-densities are just regions with increased emissivity in a tur-
bulent flow, rather than traveling shocks, as assumed until now. The algorithm and
methodology described in this work can be applied to entire jet monitoring programs,
providing a complete description of the kinematics of hundreds of sources and possibly
leading to a reinterpretation of established models. The algorithm and methodology
described in this work can be applied to entire jet monitoring programs, providing
a complete description of the kinematics of hundreds of sources and possibly leading
to a reinterpretation of established models. Our algorithm is, in addition, capable of
reconstructing videos of variable sources from single-epoch observations, as in the case
of horizon-scale observations of the black hole Sgr A* by the Event Horizon Telescope.
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4.1 Introduction

Supermassive black holes at the center of active galactic nuclei drive the ejection of
jets (Blandford and Znajek 1977; Blandford and Payne 1982), highly relativistic and
collimated streams of plasma that propagate through the intergalactic medium up to
mega-parsecs away from the SMBH (Oei et al. 2024). Early very long baseline inter-
ferometric observations of jets reported on the presence of broad, unresolved features,
often called components, moving downstream at apparent superluminal speeds due to
relativistic effects (e.g., Cohen et al. 1977; Vermeulen and Cohen 1994; Gémez et al.
2000; Jorstad et al. 2005). These bright components are typically the only features
apart from the jet core with enough emissivity to be captured in VLBI observations,
and the trajectories they follow as they propagate downstream highlight the underly-
ing jet structure (e.g., Steffen et al. 1995). Superluminal components have historically
been associated with traveling shock waves, which would compress the magnetized
plasma leading to an increase in the emissivity and fractional polarization (Marscher
and Gear 1985). Alternative models suggest that plasma instabilities and geometrical
effects could also potentially explain the observed components commonly interpreted
as shocks (e.g., Raiteri et al. 2017; Fuentes et al. 2023).

Until now, the dynamics of the jet plasma have been studied by tracking the motion
of discrete components across multiple observations. Components are identified by
modeling the jet structure with Gaussians directly fitted to the data, a process known
as model fitting (e.g., Lister et al. 2021; Weaver et al. 2022), or by identifying discrete
features in VLBI jet images with a wavelet analysis (Mertens and Lobanov 2015). This
approach has been widely used due to the limited resolution and dynamic range of
VLBI images reconstructed with traditional imaging methods (e.g., CLEAN; Hogbom
1974), as well as irregular time sampling of observations, which complicates continuous
tracking of features.

We developed a new dynamic imaging algorithm for VLBI data, named kine,
which overcomes these limitations and recovers a full polarimetric video of a variable
radio source by integrating information from observations at different times. The al-
gorithm, originally intended for dynamic imaging of intra-day variable sources like
Sgr A*, relies on a neural representation of the source’s video and recovers its frames
simultaneously from all observations, by learning and leveraging the spatio-temporal
correlations present in the data. The method provides a continuous representation of
the brightness density distribution, which can be evaluated at any chosen instant in
time. Additionally, thanks to the simultaneous dynamic imaging of multiple datasets,
each frame of the video is reconstructed using more information than in traditional
individual static imaging. This improves resolution and dynamic range, which is espe-
cially important in cases where some observations have more limited coverage, missing
radio telescopes, or lower signal-to-noise ratio (SNR). The continuity and high resolu-
tion of our video reconstructions allow us to apply post-processing video techniques,
such as the optical flow (OF) estimation (Horn and Schunck 1981), and recover the
pixel-by-pixel instantaneous velocity field associated to the plasma.

In this work, we applied kine to multi-epoch observations of radio quasar 3C 345,
obtaining a high-resolution polarimetric video of the relativistic jet. At a redshift of

z = 0.593, this source has been monitored at centimeter wavelengths since the late
1970s (Unwin et al. 1983; Biretta et al. 1986). The relativistic jet in 3C 345 is highly
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dynamic, and characterized by the ejection of numerous superluminal components
(Steffen et al. 1995; Lister et al. 2019; Lister et al. 2021; Potzl et al. 2021; Weaver
et al. 2022; Roder et al. 2024), which have been interpreted as shocks moving across
the plasma fluid. Past observations have shown that the jet structure presents irreg-
ularities and a persistent bend at 4 milliarcseconds (mas) from the core, which may
be caused by interactions with the surrounding medium. In order to explain the ap-
parent superluminal speeds measured along bent paths and the periodic changes in
the inner jet position angle, Steffen et al. (1995) proposed a helical model for the jet
structure, while Lobanov and Roland (2005) proposed a binary system of equal mass
supermassive black holes inducing precession of the main accretion disk. Thanks to
our newly developed imaging method, paired with motion analysis tools, we are able
to recover a high resolution polarimetric video of 3C 345 and measure the 2D velocity
field in the jet plasma, shedding light on the nature of jet dynamics and superluminal
components.

4.2 Methods

kine is a static or dynamic image reconstruction algorithm for interferometric data.
It is a forward imaging method, based on a neural field representation of the source’s
brightness distribution. In this section we describe our methodology, starting with
a general overview of VLBI measurements, followed by an explanation of the kine
imaging algorithm, which is summarized by the diagram in Figure 4.1.

4.2.1 VLBI measurements

In radio interferometric observations, each antenna in the array records a signal pro-
portional to the amplitude of the received electromagnetic flux density. By the Van
Cittert—Zernike theorem, the time averaged correlation product of the signals recorded
by any pair of antennas (called visibility) is the Fourier transform of the flux density
spatial distribution on the sky plane, evaluated at a frequency proportional to the an-
tennas’ distance. Specifically, for a pair of antennas A and B, with projected baseline
vector b = (by, by ), observing at wavelength A, the ideal complex visibility Vag(u,v,t)
is related to the flux density distribution Z(x,y,t) by:

VAR (u,0,1) = //e*z’“i(“””y) I(z,y, t)dzdy (4.1)
where (u,v) = (byf, bf) are the x and y spatial frequencies (refer to Thompson et al.

2017 for a detailed description of the theory of radio interferometric observations and
imaging). The above equation is written for the Stokes parameter Z, but it holds for
all Stokes visibilities (V{5 V{2 v vV,

In practice, different sources of noise corrupt the measurement of visibilities. They
can be classified as baseline-dependent errors and site-dependent errors, so the mea-

sured visibilities can be expressed as:
Vig = GaGpe' =92 (Vap +ean) (4.2)

where G4 pe'®45 are the site-dependent errors in amplitude and phase, referred to
as complex gains, while €4p is the thermal noise, which is Gaussian distributed with
baseline-dependent standard deviation (Thompson et al. 2017). The most problematic
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Figure 4.1: The kine algorithm. The algorithm is composed by a forward model, a data
constraint and an optimization method. The forward model consists of a coordinate-based
MLP which takes as input space and time coordinates and outputs the values of total intensity,
fractional linear polarization, polarization angle and fractional circular polarization, at the
location of the input coordinates. A spatial Fourier transform is applied to the image or
video estimated by the network to compute the visibilities. The difference between the
estimated and observed visibilities is computed through x%s of the chosen data products.
The loss function is built as the sum over all the data products’ x?s with a regularization
term enforcing consistency with the observed total flux. The parameters of the MLP are
optimized to minimize the loss function.

source of error is the complex gains, as they might not be estimated correctly from the
a-priori calibration, while thermal noise can be fully characterized and incorporated
in the loss function through the visibilities’ uncertainties o 4p.

Therefore, even though complex visibilities are the fundamental data product re-
sulting from VLBI observations, the imaging process can use different data products
which are constructed to be independent from site-dependent amplitude or phase cor-
ruptions. kine supports the following data products: complex visibilities V45, ampli-
tudes of the visibilities |Vap|, closure phases ® spc := arg (VapVpcVea), closure am-
plitudes Aapep = (VaVep)/(VacVep), and the logarithm of closure amplitudes.
Closure phases are unaffected by station-based phase errors, because they cancel out
in the triple visibility product (Jennison 1958; Rogers et al. 1974). For an an array
of N, antennas, a complete and non redundant set of closure phases still contains
a fraction (N, — 2)/N, of the total information in the visibilities, though the infor-
mation about the absolute location of the image is lost (Twiss et al. 1960). Closure
amplitudes are unaffected by station based amplitude errors, because they cancel out
in the double visibility ratio (Twiss et al. 1960). A complete and non redundant set
of closure amplitudes still contains a fraction (N, — 3)/(N, — 1) of the total visibility
information, though the information about the image total flux is lost. Logarithmic
closure amplitude contain the same information as closure amplitudes, but have the
useful property of having Gaussian-distributed uncertainties in the high SNR limit,
which justifies the use of a x? loss for this data product.

4.2.2 Model

kine is a forward imaging algorithm for interferometric data, that models the polarized
flux density distribution of a continuous image or video with the weights W of a neural
field (Xie et al. 2022). The neural field consists in a coordinate-based neural network,
specifically a Multi-Layer Perceptron (MLP) (Popescu et al. 2009), that takes as input
both space (right ascension = and declination y) and time (¢) coordinates and outputs
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an estimated total intensity flux density I , fractional linear polarization 7y, electric
vector position angle ¥, and fractional circular polarization 7. at that location in time
and on the sky plane:

(-,zv méa vac)W(x7yat) = Mpr(l',y,t) . (43)

The hat symbol indicates the estimated quantities as opposed to the true or observed
quantities of the source. The Stokes parameters are then computed from the polar-
ization quantities (Z, 1y, X, M) using the transformation:

=1 (4.4)
Q =1 -1y - cos (2X) (4.5)
U =11y -sin (2X) (4.6)
V=71-1m,. (4.7)

We compute VLBI measurements from the predicted video with a fully differen-
tiable forward model, then optimize the weights of the MLP to minimize a x? data fit
loss between the predicted and observed measurements of the source.

Estimated complex visibilities V, and associated data products, are computed by
evaluating the 2D Fourier transform of the network-estimated flux density Z for the
(u,v,t) points corresponding to the observation tracks. In practice, 7 is estimated for
a discrete set of {(x,y,t)} points, so the visibilities are obtained by a discrete Fourier
transform F implemented through a matrix multiplication. For each observation time
t; and u-v point 4, the estimated visibilities are:

Vo ((usv)ists) = > FarDw (@, 9)e: t5) (4.8)
k

where k runs over all spatial points at which the video is estimated and both the
estimated total intensity and the estimated visibilities are dependent on the network
parameters yy.

MLP networks have been shown to suffer from “spectral bias” (Rahaman et al.
2019) causing the network to favor representing only low spatial frequencies when
trained with gradient descent. This tendency is advantageous for VLBI reconstruc-
tions as it acts as an implicit regularizer, encouraging the network to learn smooth
reconstructions without spurious high-frequency features in space or time. In addition,
the continuous neural representation allows us to sample the video reconstruction at
times where observations are not available, by leveraging the correlations from neigh-
boring frames. The implicit regularization provided by MLP networks has already
been applied successfully to other ill-posed inverse problems in astrophysical imaging,
where many possible solution fit a given set of measurements (Levis et al. 2024; Zhao
et al. 2024; Zhong et al. 2021).

4.2.3 Optimization

The kine algorithm optimizes the network’s parameters so to minimize the difference
|D — ﬁw| between observed and estimated data. We assume that the noise residuals
in the data products are Gaussian, which is a valid assumption for visibility and
amplitudes, and for closure quantities in a high SNR regime. Therefore, the natural
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loss function £ for the optimization process is the sum of the x2s of the chosen data
products:

N 2
Ny 1 Np,; <Dlj _ DW”)

1
oo N RN, 2 W

g5 D,ij

where D indicates a generic data product, the index j runs over all the observed
times, from 1 to the total number of observed times N, the index ¢ runs over all data
corresponding to the observed time ¢;, from 1 to the total number of data Np ;, and
kp is a normalization factor that takes into account the data product’s degrees of
freedom.

The optimization process consists in iterating the following steps:

1. Estimate the video, with the current network parameters W, on a coordinate
grid with x and y regularly spaced and ¢ spaced accordingly to the observations
times.

2. Compute the loss function from the estimated video and the observed data.

3. Update the MLP parameters to W1, by applying a gradient descent optimiza-
tion step of the loss function. More specifically, we use the Adamax optimizer
(Kingma and Ba 2014).

In this work, convergence is considered to be reached when the moving average of the
loss function over a window of 100 iterations does not decrease by more than 1% for at
least 1000 iterations, provided that all data products in the loss function have reached
a value of ~ 1. This convergence was achieved after approximately 2 x 10* iterations,
a value that we finally set as the total number of iterations.

4.2.4 Calibration-free imaging details

When imaging a dataset with no gain corruption, the best data product to use are
complex visibilities, since they contain the full amount of available information. In such
a case, the imaging procedure in kine consist of running the optimization algorithm
estimating all Stokes parameters simultaneously. However, if the dataset contains
amplitude and/or phase gains, it is better to perform imaging using closure quantities,
which are error independent. When imaging with closure or log-closure amplitudes,
the information about the total flux of the frames is lost. In this case, a total flux
regularizer term is added to the loss function, constraining the total flux in each frame
to a value either provided by the user or computed from the instantaneous visibility of
the shortest baseline. When imaging with closure phases, the information about the
absolute location of the source in the frame is lost. Because of this, the reconstructed
video may show the source drifting smoothly across the field of view. We solve this
issue post-imaging, by re-aligning the frames to a chosen feature, such as a jet core.
The alignment process consists of shifting each frame by the amount that maximizes
its cross-correlation with the reference frame.

The current version of kine doesn’t model station gains simultaneously with the
imaging. For the total intensity reconstruction, this problem is solved by relying
on closure quantities. The closure quantities for the @ and U signals, however, are
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gain independent only in the absence of polarization leakage (Roelofs et al. 2023),
but, even in that case, the low SNR of the @ and U data, combined with the loss
of information due to the use of closure quantities, may result in insufficient data
constraints. Therefore, we found that the most effective procedure to produce a full
polarimetric video, in the presence of gain corruption, is to apply the following steps:

1. Image the data in total intensity only, using the appropriate closure quantities.
2. Self-calibrate the data to the total intensity video reconstruction.

3. Image the self-calibrated data in full Stokes, using complex visibilities.

The kine imaging method was born out of the need to perform dynamic imaging of
a sparse-coverage observation of a variable source or multiple observations of the same
evolving source. However, the algorithm can reduce to static imaging by removing the
time dimension from the input coordinates.

4.2.5 Architecture and training

The algorithm is implemented in a python code, using the machine learning framework
JAX (Bradbury et al. 2018). We use an MLP of depth D = 4 and width W =
256. A width of W = 256 is generally considered sufficient for the network to fall
in the infinitely wide limit. The depth of the network determines the expressivity
of the network. The higher the number of layers, the more complex the functions
that the network can approximate. However, a high number of layers increases the
number of tunable parameters, making optimization difficult and slower. Therefore D
should be set by trial and error to the minimum value that guarantees the expressivity
required for the task. The network includes a skip connection (He et al. 2016), which
adds the output of the first layer to the input of the last layer. The output of each
node, in each layer except the last one, is normalized with respect to the total set of
input coordinates, so to have zero average and unit standard deviation, (Toffe 2015).
The activation function used in the hidden layers is the Gaussian Error Linear Unit
(GELU) (Hendrycks and Gimpel 2016), while the activation function of the output
layer is a SoftPlus function for 7 and a sigmoid for my, M., and x. The code makes
use of the eht-imaging library (Chael et al. 2018) to deal with interferometric data
and standard interferometry functions. During training, the input points have space
coordinates sampled on a regular grid, while time coordinates follow the gridding of
the observation’s timestamps. In the imaging of 3C 345 we used 200x200 spatial input
points spaced at 75 pas.

The runtime of the code depends on the dataset, specifically on the number of
visibilities, the number of epochs, the ratio between field of view and beam size and
the data products used. Training the network to image 116 epochs of 3C 345 data
from the VLBA required ~1.3 hours on four NVIDIA A100 GPUs, while imaging 4
days of M 87* observations by the EHT required ~20 minutes on one NVIDIA A100.
The RAM memory required to run the code is set by the size of the matrices used to
compute the Fourier transform and can be determined with the formula:

RAM = Nyis - Nepocs * Ny - > [ 4 (4.10)
D

where Ny is the number of visibilities per epoch, Nepochs is the number of epochs,
Npx is the number of spatial input points, and fp is a multiplying factor that depends
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on the data products used, being 1 for visibilities and amplitudes, 3 for closure phases,
4 for closure amplitudes and log closure amplitudes.

4.2.6 Initialization

When the u-v coverage of the VLBI data is sufficiently dense, such as in the case of
VLBA observations, kine is able to reconstruct the image or video starting from a
random initialization of the network weights, specifically we use the He uniform initial-
ization (He et al. 2015), and a zero initialization of the biases. However, when imaging
data with sparse coverages, such a the EHT array ones using closure quantities, con-
vergence to a correct reconstruction requires initializing the image or each frame of
the video to a simple shape such a disk or a Gaussian which constrains the total flux
and helps retain the majority of the flux in a specific area of the image (such as the
center), hence preventing the appearance of tiling artifacts (i. e. artifacts consisting
of adjacent repetitions of the main structure in the image). Even in cases in which the
initialization is not necessary for a correct converge of the network, it may be useful
to apply it, to constrain the image to a specific position in the frame. We have found
that, while it is important that the initialization image has the correct total flux and
covers approximately the area where most of the source’s flux should be located, the
specific shape of the initialization image does not affect the resulting image or video
obtained when convergence is reached.

The initialization is carried out by training the network directly on the initialization
image Zinit(z,y), with a pixel-to-pixel distance loss function:

Linit = Y, (Timit (i, 1) — D (@i, 13, 15)) (4.11)

5]

without the computation of the image Fourier transform or other data products. After
the weights and biases of the network are optimized to output the initialization image,
the training on the data products begins.

4.2.7 Optical flow

Traditional imaging methods, such as CLEAN, characterize the dynamics of the jet by
tracking the motion of Gaussian components obtained with model fitting (e.g. Lister et
al. 2021). With kine, we can move beyond this approach and estimate the continuous
velocity field of the superluminal jet via video post-processing techniques. In our work
we present velocity estimates using the Horn-Schrunk optical flow algorithm (Horn
and Schunck 1981), though kine provides reconstructions from which this field could
be easily estimated with other algorithms. The Horn-Schrunk algorithm estimates
the optical flow field, which measures the pixel displacement between neighboring
pairs of frames. The pixel displacement, combined with the length of the time interval
between frames, gives an estimate of the jet’s velocity field at each pixel location of the
video. In addition, we integrate the velocity field to obtain the trajectories followed by
volume elements in the jet and track significant jet components. Optical flow recovery
methods are widely used in many research fields involving video observations, including
astrophysics (e.g. Colaninno and Vourlidas 2006).
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4.3 Results

The MOJAVE monitoring program (Lister et al. 2018) hosts observational data of
3C 345 since 1995 and continues to observe it regularly with the Very Long Baseline
Array (VLBA) up to the present day. We used kine (details in section 4.2) to re-
cover the time-resolved polarimetric emission of 3C 345 from the MOJAVE database,
consisting of 116 observations at 15 GHz and spanning 27 years, from January 1995
to May 2022. Thanks to kine’s ability to integrate information from frames at dif-
ferent times, the simultaneous imaging of all epochs yields results with a dynamic
range of ~ 8.6 x 10% and a resolution of ~ 80 micro-arcseconds (uas), representing an
improvement of 5-6x in resolution and more than 200X in dynamic range compared
to previous studies.

In the top two rows of Figure 4.2 we show a representative sample of 12 images
out of the 116 video frames reconstructed, while the complete set of frames can be
found in Appendix B in Figures 4.11 and 4.12, and in the video available at https:
//github.com/mariannafoschi/phdthesis/blob/b847abdb9984f636adf3675c¢
c85df8047ac30544/chapter3-videol-kine3c345.gif. The images present two dis-
tinct regions, a brighter inner jet, propagating westwards, and a more extended plume
of diffuse emission bending towards the north, for a total extension of ~13 mas. For
three selected frames, a zoom of the compact inner jet is shown in the lower rows of
Figure 4.2, with polarization ticks in the left panels, and the plasma velocity vector
field (optical flow) in the right panels. The recovered video displays a highly resolved
jet structure which propagates from a bright, compact region at the leftmost end.
From this location, corresponding to the jet core, plasma is continuously expelled
downstream with occasional and noticeable ejection of discrete bright features.

Within the inner few milli-arcseconds, the plasma seems to move ballistically along
the path determined by the core’s orientation at ejection (e.g. left features in panels b
and c of Figure 4.2 and jet launching direction in Figure 4.5), then, at a distance of ~2-3
mas from the core, ejected discrete features turn inward towards the jet axis (e.g. right
feature in panel b of Figure 4.2 and trajectories in top right panel of Figure 4.3), before
vanishing into the plume (e.g. right feature in panel ¢ of Figure 4.2). These proper
motions have been identified as well in previous works through Gaussian model fitting
at 15 GHz and other frequencies e.g. Jorstad et al. 2017; Lister et al. 2021; Roder et al.
2024. The “bouncing” of initially ballistic components against the jet edges suggests
that the jet is surrounded by a high-pressure interstellar medium (ISM) that constrains
and collimates the jet’s inner section. Overall the complex motion and dynamics that
we observe suggest the presence of a plasma that is pushing through a denser medium,
where the jet fluid evolves from a turbulent state in the inner section to a more steady
regime in the outer section.

We investigate the dynamics and structure of the relativistic jet shown in the
reconstructed video by: computing the jet velocity field with the optical flow method,
analyzing the instantaneous and time-average linear polarization maps, and tracking
the jet core orientation angle. Thanks to these three analysis approaches, we can
draw conclusions on the nature of bright traveling components, the magnitude of the
apparent flow speed in the jet, the morphology of magnetic fields in the jet, the extent
and regularity of the jet axis precession, and the interactions between the jet and the
ISM.
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Figure 4.2: Time-resolved relativistic jet flow in 3C 345. (Top rows) Sample frames
from the kine video reconstruction of 116 epochs from the MOJAVE program at 15 GHz.
(Bottom rows) Zoom-in of selected frames, showing the linear polarization (left) and the
optical flow (right) of the inner jet. Linear polarization is displayed as ticks whose length and
color are proportional to the logarithm of the recovered polarization field, with the longest
vectors corresponding to a linear polarization of 5.3 x 1073 Jy/px. Optical flow is displayed
as vectors proportional to the recovered instantaneous velocity field, with the longest vectors
corresponding to a velocity of 9.0 c. The vectors’ color matches the color of the underlying
total intensity image. The dates corresponding to the selected frames are marked in red on
the timelines.
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4.3.1 Jet velocity field

In contrast to the standard kinematic analysis of multi-epoch VLBI data, which relies
on fitting Gaussian components to broad features traveling along the jet, we are able
to track the instantaneous, local velocity field of the jet’s plasma through optical
flow estimation. This is enabled by the higher angular resolution of our method’s
reconstructions, thanks to which we can obtain a pixel-by-pixel velocity vector field,
defined over space and time. In the right panels of Figure 4.2, the velocity field is
represented as vectors proportional to the pixel velocity. The cadence of the 3C 345
observations is irregular in time, and the separation between adjacent epochs can
range from 6 days to more than 1 year. In contrast with other imaging methods,
kine reconstructs a continuous flux density distribution, allowing for high-quality
interpolation between observed frames. For the analysis of the fluid jet dynamics we
used the optimized neural network to interpolate frames at times uniformly distributed
between the first and last epoch, so that the video reconstruction is not subject to
errors derived from irregular sampling or frames widely separated in time.

In the top left panel of Figure 4.3, we present the average apparent speed in the jet
(a), with the corresponding standard deviation (b), indicating the amount of variability
in the flow speed. We computed the average speed by masking portions of the image
with total intensity below 5 times the root mean squared (rms) error of the image.
In Figure 4.10 in Appendix B we show the stacking of the masks, which indicates the
regions where the estimate of the average is more reliable. By integrating the OF field
from a given initial position, one obtains the trajectories followed by volume elements
of the jet plasma, as shown in top right panel of Figure 4.3 for trajectories starting
from May 2002 (other starting dates show similar behaviors).

Lister et al. (2021) tracked the motion of Gaussian components fitted to MOJAVE
observations. Integrating the OF velocity field from the center of the first detection of
a component yields trajectories that coincide with those from model fitting as shown
in the middle row of Figure 4.3. The trajectories of bright features tracked with OF
and the trajectories of those same features obtained from model fitting are in good
agreement within the inner ~2 mas from the core, where the Gaussian components
are well localized. Further downstream from the core, where model fitting struggles
to constrain localized components in favor of diffuse ones, the two methods are in
agreement on the overall trajectory, though small discrepancies are present. Given
the agreement between the OF motion field and the lower resolution trajectories from
prior model fitting (Lister et al. 2021), we trust the optical flow to track the apparent
speed of the plasma fluid correctly. However, the OF method is not limited to tracking
simple bright components like in model fitting. Indeed, thanks to the high resolution
achieved by the kine reconstruction and to the locality of the OF vector field, the OF
is able to capture not only the velocity of traveling components, but most importantly
the velocity of the bulk jet flow in the absence of a passing component.

The highest value of the mean apparent speed reaches a 3,,, = 12+ 0.2 ¢ and are
located between 1 and 3 mas from the core in the southern part of the jet, correspond-
ing to the area towards which the majority of the components are ejected. The average
speed in other areas of the jet within the first 5 mas is [9 — 11] £ 0.2 ¢, while further
out in the diffuse emission region it is [5 — 8] £ 0.2 ¢, indicating a deceleration in the
plasma flow. The speed standard deviation has no significant location dependence
and is contained between [3 — 6] ¢, indicating that the plasma flow is turbulent and
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Figure 4.3: Optical flow velocity field in the jet plasma. (Top left) Time average (a)
and standard deviation (b) of the apparent velocity, with magnitude displayed by the color
map and direction by the arrows. (Top right) Trajectories obtained integrating the optical
flow starting from May 2002. The trajectories represent the path followed by test particles
moving according to the velocity vector field. The color of each trajectory indicates the
average speed of the trajectory, with the same scale as panel a. (Middle) Comparison of
component trajectories from traditional model fitting (blue) (Lister et al. 2021), and optical
flow (orange), for two example components. The blue circles indicate the size of the model-
fitted components. (Bottom) Component speed as a function of time. The average speed for
each method and component is shown as a dotted line. The velocities reported by (Lister
et al. 2021) are Bapp,c6 = 11.79 £0.19 ¢ and Bapp,c20 = 13.16 £ 0.17 ¢ respectively.

subject to relevant changes in apparent speed.

We investigate the nature of the bright components visible in the total intensity
video by comparing their instantaneous speed, obtained from the OF field along the
component trajectory, against the average jet speed. The lower panels in Figure 4.3
show the speed of two example components (C6 and C20) as a function of time. The
time averaged component speeds are Bapp.cé = 10.3+0.2 ¢ and Bapp,c20 = 13.0 £ 0.3
¢, similar to the previously measured values of Bapp c6 = 11.79£0.19 ¢ and Bapp,c20 =
13.164+0.17 ¢ (Lister et al. 2021). While these speeds are indeed similar, for component
C6, model fitting and the optical flow yield a difference of 1c. We attribute this to
the intrinsic differences in how these values are obtained (polynomial fitting of model
fitted Gaussians in the visibility domain versus feature tracking in the image domain).
For the other components, the OF velocity also yields similar values, that match the
velocities obtained with model fitting. The magnitude of the components’ velocities
is comparable to the mean bulk plasma flow speed, as the top left panel in Figure 4.3
indicates. This suggests that the bright components are not in fact shocks, but more
likely localized over-densities in the plasma flow or regions with increased emissivity.
We further test this hypothesis in the next section by analyzing their polarimetric
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properties.

Other information that we can obtain from the optical flow field is that, around
2 mas from the core, trajectories converge towards the jet axis in a fast flowing path
(evident in yellow in the top right panel of Figure 4.3), matching the motion of various
components visible in the video (see e.g. panel b in Figure 4.2). We also see that the
optical flow trajectories bend northwards between 5 and 8 mas, suggesting the presence
of an external wind in the ISM that blows from south to north and deviates the initial
westward direction of the jet.

OF aims to accurately capture the apparent motion of features in any region of the
jet, matching the motion detected by human perception. However, the algorithm relies
on image gradients and therefore can only track the motion of visible features, so, in
the limit of a perfect laminar flow, the optical flow would report a null velocity, as no
feature is observed moving, while, in the presence of a turbulent flow, the reported
velocity is expected to be accurate. This explains why the velocity appears to be
extremely low in the core and its proximity (right panels in Figure 4.2 and top left
panel in Figure 4.3). We counsider the OF to provide a reliable estimate of the jet
velocity starting from ~0.5 mas from the core. The non-null velocity detected in
the core region is caused by residual frame-to-frame misalignment. We consider the
time average of the average velocity reported for pixels contained in the core, as
the uncertainty on the individual instantaneous OF velocity measurements, since we
believe this to be the limiting source of uncertainty. The uncertainties that we report
are of the same order of those obtained by component model fitting (Lister et al. 2021),
showing that resolution is not the factor restricting the precision of the measurements,
which is instead limited by the irregular evolution and motion of the jet.

4.3.2 Polarization and magnetic field

kine reconstructions of the data provide a video of the Stokes parameters Z, Q, and
U (we neglect Stokes V in this work), that enables us to observe the evolution of the
linear polarization P = Q + il{ and the fractional liner polarization m, := |P|/Z in
relation to structural changes in the jet flow. In Figure 4.2 we show the polarization
field in three example frames, with the length of ticks proportional to log(P).

A transverse-parallel-transverse structure with respect to the jet axis is present in
various epochs and seems to be the underlying structure in the EVPA distribution.
An example of that is displayed in panel a of Figure 4.2 where the EVPAs are aligned
with the direction of the jet along the jet spine, while they are perpendicular to the
jet in proximity of the jet borders. Occasionally, in coincidence with the injection of
some bright features, the pattern is disrupted by the traveling feature, as shown in
panels b and c of the same figure. We present the time-averaged polarization field in
panel a of Figure 4.4. In panel b we show the time-averaged fractional polarization my,
with associated standard deviation in panel e and mask stacking map in Figure 4.10
in Appendix B. In panels ¢ and d of Figure 4.4 we highlight the changes of the EVPA
orientation and the fractional polarization across transversal sections of the jet. From
1995 to 2000, most of the 3C 345 observations lack polarimetric data. Therefore, when
time averaging, we considered only frames corresponding to observations from June
2001 or later, for which polarimetric data are always present.

We observe that the EVPA distribution recovered in panel a of Figure 4.2, which
indicates a magnetic field aligned with the jet at the edges and perpendicular at the
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Figure 4.4: Polarization field structure in the 3C 345 jet. (a) Time average polarization,
shown as ticks proportional to the logarithm of the linear polarization intensity and directed
like the electric vector position angle. The background image shows the time average total
intensity in color scale. (b) Time average fractional polarization, in the same scale as panel e.
(c) EVPA values along the sections indicated in panel a. (d) Fractional polarization along the
sections indicated in panel b. (e) Standard deviation of the fractional polarization. (f-g-h-i)
Instantaneous frames with total intensity displayed as color map and fractional polarization
as contour lines. Contours are shown for m = 1, 10, 30, 50, with darker contours corresponding
to lower m.

center, persists also in the time average polarization map, with a sharp transition in the
inner 2 mas (sections 1 and 2 in panel c of Figure 4.4) and a smoother transition further
from the core (section 3). We also observe an increase of the fractional polarization
at the edges of the jet (panel d, Figure 4.4), especially the southern one, in agreement
with what reported, in lower resolution, by Pushkarev et al. (2023).

The fractional polarization maps are another tool to probe the nature of the trav-
eling bright features and discriminate whether they are shocks. The frames displayed
in panels f-i of Figure 4.4 show four of these features, with the corresponding maps
of the instantaneous fractional polarization reported below. If the bright components
were caused by the propagation of shocks, we would expect that the component’s frac-
tional polarization m, would be higher compared to other areas of the jet (Marscher
and Gear 1985). However, even though the motion of a bright feature through the jet
causes a local, slight disruption of the underlying polarization structure, we observe
that, indeed, there is no correlation between the instantaneous maps of m, and the
position of the features in the total intensity frames. Additionally, since the majority
of components are ejected towards the southern side of the jet, we would expect that
the fractional polarization of the average map should be higher in that area, but that
is not the case.
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Figure 4.5: Jet launching direction in 3C 345. The convention used for the angle is
0 pointing west, with positive values in the north-west quadrant. (Left panel) Blue points
indicate the angle computed from the frame corresponding to each observed epoch, with error
bars indicating one sigma. The orange line indicates the mean of a Gaussian Process (GP)
regression to the angle values, with the orange bands indicating one and three sigmas. (Right
panel) The average of the GP regression is plotted in angular coordinates, for a more intuitive
representation of the change in the launching direction. Red colors indicate the oldest epochs,
while blue colors indicate the most recent epochs.

4.3.3 Core orientation and jet precession

For each frame fo the video, we computed the jet launching direction angle by fit-
ting an elliptical Gaussian to the core and identifying the angle with the orientation
of the Gaussian’s major axis. The direction is shown as a function of time in Fig-
ure 4.5, where blue points indicate the measured direction, while orange points show
the average and standard deviation of a Gaussian Process regression to the data. The
projected jet launching direction has an overall variation of 60°, with intermediate
smaller oscillations, with the jet mostly ejecting material towards -120° to -90° east of
north. The variation of the direction angle, however, is irregular and we don’t observe
any periodicity in the ejection direction.

4.4 Conclusions

In this work we present a comprehensive analysis of the parsec-scale kinematics of the
relativistic jet in 3C 345, obtained from a full polarimetric video reconstruction of the
source. We observe an inner jet with complex, turbulent motion, characterized by the
ejection of bright components from the core.

The orientation of the core varies irregularly spanning a projected angle of 60°,
affecting the initial direction of the components, which travel ballistically for the first
2-3 mas before deviating towards the center of the jet and diffusing into a northwards
bent plume. Caproni and Abraham (2004) and later Lobanov and Roland (2005),
employed a binary black hole (BBH) model (Begelman et al. 1980) to explain the ob-
served optical and radio variability of 3C 345. Caproni and Abraham (2004) observe a
quasi-ballistic motion of superluminal features within 1 mas from the core, which they
interpret as the result of a non-coplanar secondary black hole inducing torques in the
inner parts of the disk. Lobanov and Roland (2005), instead, propose an equal-mass
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BBH system paired with a two-fluid model for the jet of the primary BH and fit the
combined model to the optical and radio light curve and the trajectory of an ejected
superluminal component. They obtain a characteristic rotational period of the accre-
tion disk of 240 years, and an orbiting period for the secondary black hole of 480 years,
which induces a precession of the accretion disk axis with a 2570 years period. They
attribute the yearly variability timescale observed in the light curve and component
ejection process as the result of thermal and mechanical instabilities and accretion rate
variations. What we observed instead is that the short-term variability of 3C 345 is
directly linked to the change in the orientation of the jet core, which, nevertheless, we
find to be irregular rather than periodic or quasi-periodic. The irregular jet precession
was also observed in blazar 3C84 (Foschi et al. 2025a) and could be attributed to
instabilities in the accretion disk surrounding the central black hole or a misalignment
between the angular momentum of the accretion disk and the black hole spin (Pringle
1997; Dunn et al. 2006; Liska et al. 2018; Liska et al. 2019; Liska et al. 2021), which
may cause a warping of the disk and a stochastic variation of the jet’s direction.

The polarization pattern displays a transverse-parallel-transverse structure with
respect to the jet axis, that is occasionally affected by the passing of bright features.
This could be a clear indicator of the presence of a long-lasting toroidal magnetic field
threaded to the jet in 3C 345, as previous studies have pointed out (Lyutikov et al.
2005; Fuentes et al. 2018; Fuentes et al. 2021), and which could be associated to a
large-scale helical magnetic field with a high magnetic pitch angle, that is dominated
by the toroidal component (Gabuzda et al. 2014). In Pushkarev et al. (2023), a very
similar, but lower resolution, EVPA pattern is reported for 3C 345 from the stacking of
51 MOJAVE epochs. The authors interpret this pattern as the result of either a shock-
induced division of the field between the jet spine and the edges, or a helical magnetic
field in which the superposition of differently polarized regions lead to a spine-edge
stratification. As discussed in the next paragraph, we discard the shock-ordering case
in favor of a helical magnetic field. A future analysis with combined multi-frequency
and multi-epoch data will enable the possible detection of rotation measure gradients,
thus confirming the existence of a helical magnetic field in 3C 345 (Gabuzda et al.
2015).

We computed the apparent local instantaneous velocity of the jet plasma using
optical flow. The average flow speed in the jet changes from 10-12 ¢ within the first 3
mas from the core, down to 5-8 ¢ beyond 6 mas from the core. This shows that the
plasma undergoes a deceleration as it travels further from the jet core.

We integrated the velocity field to obtain the trajectories followed by volume ele-
ments of the plasma. The OF trajectories that begin close to the core initially diverge
from the jet axis, following an apparent ballistic motion, then converge towards it at
a distance of 2-3 mas from the core. Other trajectories show that the plasma fluid
changes direction following the apparent bend in the jet at 5-8 mas from the core.
This suggests the presence of an ISM wind which deviates the jet’s directions and
steers the plasma flowing along the jet. Another evidence of the interaction between
the jet and the surrounding ISM is the increased fractional polarization in proximity
of the jet borders, especially the southern one. This may be due to the shearing of
the interface layer between the jet and the ISM, which would increase the ordering
of the magnetic field on the interface and as a consequence increase the fractional
polarization (Meenakshi et al. 2023).
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Optical flow trajectories that follow discrete components are consistent with those
obtained in previous model-fitting studies, supporting the validity of the method.
However, we find no evidence that the bright components coincide with shocked regions
in the plasma flow, as previously proposed (Blandford and Konigl 1979; Marscher and
Gear 1985). Instead, our images show that the instantaneous speeds of the components
(10-13 ¢) are comparable to the time-averaged speeds of the bulk flow in the same
regions (11-12 ¢). In the presence of strong shocks, one would expect a significant
difference between the bulk velocity of the shocked material and the pattern velocity
of the shock. Nevertheless, it is worth noting that similar values for the shock pattern
speed and the plasma flow speed can also arise if the protons are not highly relativistic
(Marscher 2006). The fact that the peaks in the fractional polarization maps do not
correlate with the positions of the bright features further support a scenario in which
no strong shocks are present in the jet. A traveling shock compresses the plasma
in the shocked region, amplifying the component of the magnetic field parallel to the
shock front due to the increased density. In the case of a turbulent magnetic field or an
ordered field dominated by a toroidal component, compression enhances magnetic field
ordering and increases the fractional polarization within the shocked region, whereas
a predominantly poloidal magnetic field would instead lead to a decrease in fractional
polarization (e.g. Marscher and Gear 1985; Hughes et al. 1985). Since the polarization
pattern in our observations points to a predominantly toroidal magnetic field, we
would expect to see localized increases in fractional polarization at the positions of
the bright components if they were shocks. However, this is not observed. Taking
all this into consideration, we interpret these bright, compact features as regions of
increased pressure caused by plasma turbulence, with enhanced emissivity due to
Doppler boosting when they are ejected toward the south. This could not be concluded
from earlier image reconstructions of 3C345 (e.g. Lister et al. 2021) because model
fitting is only able to capture the speed of moving components, which would coincide
with the pattern speed of a possible shock, but it’s not able to recover the underlying
flow speed. Additionally, the low resolution of polarization maps, prevented a proper
comparison between the fractional polarization of a component and that of the other
portions of the jet.

4.5 Discussion

Our higher resolution analysis was made possible because of two properties of our
imaging method. The first is that, by imaging all observations simultaneously, kine
is able to propagate information across frames, improving resolution and dynamic
range beyond the super-resolution achievable by frame-by-frame imaging (Figure 4.7,
Appendix B). The second is that, thanks to its neural representation, kine produces a
smooth and continuous model of the flux density distribution, that can be sampled at
any required time coordinate, which enables pixel-by-pixel motion analysis using tools
such as the optical flow. The application of kine to dynamic imaging of multi-epoch
observations can provide significant advances in the study of jet kinematics. From
highly resolved time-continuous videos, it is possible to recover the instantaneous local
velocity field of the jet plasma, instead of being limited to only tracking model-fitted
components. An analysis of the multi-epoch observations of other blazar sources with
our proposed imaging and analysis method may lead to a revaluation of the nature
of assumed traveling shocks, or, instead, to a precise measurement of the pattern and
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flow speed associated with the shocks.

Imaging of multi-epoch blazar observations is not the only possible dynamic appli-
cation of the kine method. In fact, the algorithm was originally developed to image
single observations of a rapidly varying source, like in the case of horizon-scale ob-
servations of the Sgr A* black hole by the Event Horizon Telescope. In this case,
the variability timescale of the source is significantly shorter than the full observation
time, which violates the aperture synthesis fundamental assumption of source invari-
ance, and the instantaneous coverage is too sparse to constrain individual frames, so
dynamic imaging is the only possible approach to spatially resolve the source’s vari-
ability. An upcoming publication will soon present the validation of the method for
extremely sparse observations of the supermassive black hole Sgr A* by the EHT.

Compared to other forward-modeling static imaging algorithms, kine achieves
super-resolution equivalent to recent Regularized Maximum Likelihood (RML) meth-
ods (e.g. eht-imaging, Chael et al. 2018), and Bayesian methods (e.g. Comrade,
Tiede 2022, Resolve, Junklewitz et al. 2016), improving over the traditional CLEAN
method (Hogbom 1974). In contrast to existent dynamic imaging algorithms, like
StarWarps (Bouman et al. 2018), eht-imaging (Johnson et al. 2017), ngMEM (Mus
and Marti-Vidal 2024), kine enforces correlations through implicit regularization and
is therefore free from explicit prior assumptions about the morphology or appearance
of the source. This ensures that the reconstructions are robust, and at the same time
makes the algorithm applicable to any kind of source. Additionally, kine doesn’t re-
quire a careful setting of the regularizer, nor computationally expensive exploration
of the hyperparameter space. kine’s advantage over dynamic Bayesian methods, like
Resolve (Arras et al. 2022), is the significantly shorter runtime and the ability to scale
to large datasets.

In general, kine can be applied to any VLBI dataset, to single or multiple observa-
tions and it can perform both static and dynamic imaging, in full polarization. Another
advantage of kine is that it requires minimal imaging knowledge from the user and,
thanks to implicit regularization, it minimizes the bias imprinted by possibly incorrect
prior assumptions about the image morphology. Because of this, in addition to its po-
tential for imaging dynamic sources, like blazars, black holes, or X-ray binaries, kine
is also a promising method for various VLBI tasks which may require automation.
More broadly, the method has potential for applications to imaging problems also in
other fields of science. For example, in medical diagnosis, magnetic resonance imaging
(MRI) needs to solve the same formal problem as VLBI imaging, and kine could prove
useful for the imaging of moving organs, like the heart or lungs. The deep learning
framework employed by kine, can be naturally extended to multi-frequency imaging,
by treating frequency as one extra dimension of the input coordinates. Future work
will be aimed at implementing multi-frequency imaging paired with the estimation of
the spectral index map.

4.6 Appendix A. Synthetic data and validation

We validated the algorithm on a synthetic dataset prepared to resemble the morphol-
ogy, coverage and noise of the real 3C 345 data. The ground truth video consists of
a geometric jet model where the jet’s emission direction is precessing along a circular
orbit and the emitted components move ballistically, expanding in size and decreasing
in brightness as they move away from the core. The ground truth model is shown in
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the first column of Figure 4.6. For each observation epoch we simulated a synthetic
dataset from the jet model, using the corresponding real u-v coverage and applying
the same amount of thermal noise corruption. We did not need to introduce complex
gain corruption, since the closure quantities used in the imaging process are invariant
under gain errors.

We imaged the synthetic data with the same parameters that were later used to
image real data. In both cases, we first imaged the total intensity video using only
closure phases and logarithmic closure amplitudes, so that the reconstruction would
be completely free from any hypothetical residual calibration error. Then we self-
calibrated the data to the resulting video, and we imaged the linear polarization video
using polarimetric complex visibilities of the self-calibrated data. The reconstructions
of synthetic data are displayed in the second row of Figure 4.6 and show that kine
is able to recover the model with high fidelity. This is reflected by the normalized
cross correlation between the ground truth frames and the reconstructed ones, which
has an average value of 0.988 for both the total intensity and the linear polarization
images, with minimum values of 0.975. The reconstructions achieve a dynamic range
of ~ 10° — 10% for both the total intensity and the polarization images.

4.6.1 Static vs dynamic comparison

In the dynamic imaging of 3C 345, the instantaneous coverage corresponding to one
frame is the coverage of one full observation. This means that the instantaneous
coverage is more than sufficient for snapshot imaging of the individual epochs. For a set
of multiepoch observations, kine is able to provide both dynamic and snapshot static
reconstructions in super-resolution. However, there are some advantages in obtaining
a dynamic imaging video rather than a sequence of independent static images.

One reason is that the video provides a continuous representation of the move-
ment and evolution of the source. A sequence of independent images, even if aligned
correctly, always presents discontinuities from frame to frame, which cannot be over-
come by image interpolation. Having a continuous reconstruction is important for any
image domain analysis, especially e.g. for computing the optical flow. Furthermore,
the continuous formulation of kine’s framework allows for the sampling of the recon-
structed video at any time value, providing a motion-preserving interpolation between
observed frames.

Another reason is that dynamic reconstructions achieve better dynamic range and
eliminate the minor artifacts present in some of the snapshot reconstructions, by lever-
aging information from neighboring frames. Imaging artifacts don’t correspond to any
real structure in the source image and, since the u-v coverage and noise change from
epoch to epoch, they are not consistent from frame to frame. Because of this, they
are not recovered in a time-regularized video, which requires frame-to-frame consis-
tency. The dynamic range of an interferometric image depends on the signal-to-noise
ratio (SNR) and the u-v coverage. For some epochs of the 3C 345 observations, SNR
and coverage are of poorer quality than the majority of epochs, which reduces the
dynamic range of static reconstructions from those epochs. This problem is solved
with dynamic imaging because the missing information in one epoch can be recovered
by the propagation of information from neighboring epochs. Figure 4.7 shows a com-
parison between traditional static imaging with CLEAN, snapshot static imaging with
kine and dynamic imaging with kine. Both kine reconstructions show consistency
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Figure 4.6: kine reconstruction of synthetic data Validation of the kine algorithm on
synthetic data mimicking VLBA observations of 3C 345 at 15 GHz. The figure compares a
geometric jet model (left column) to the kine reconstructions (right column) of synthetic
data generated from it. A few sample frames are shown as example. The ticks indicate
the direction of the EVPA and their length is proportional to the logarithm of the linear
polarization.
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Figure 4.7: Image comparison among CLEAN, kine static, kine dynamic. Compar-
ison between representative reconstructions of VLBA observations of 3C 345 from CLEAN
(left column), kine static (center column), and kine dynamic (right column). The clean im-
age is restored with the nominal beam of (870, 615) pas. The images are rescaled so that the
value of the brightest pixel is the same for all images and they are clipped on the lower end
to the corresponding noise level. In this way, when plotting the images with the same color
scale, the difference in dynamic range is made clear by the background color of the images.

with the CLEAN image, though they are able to resolve significantly more structure in
the jet. However, the kine dynamic imaging reconstruction achieves better dynamic
range than both the CLEAN image and the kine static snapshot.

We quantify the dynamic range improvement, by computing, for all epochs, the
dynamic range of CLEAN images, kine static images and kine dynamic frames. The
dynamic range is defined as the ratio between the maximum value in the image and
the image noise level. We defined the noise level as the average image value in a
portion of the image not containing any real emission. The results are displayed in
the left panel of Figure 4.8. The average dynamic range is 3.7 x 103 for CLEAN,
3.9 x 10* for kine static and 8.6 x 10° for kine dynamic, resulting in an improvement
of two and a half orders of magnitude for kine dynamic over the traditional CLEAN
imaging method. Additionally, the dynamic range of the two static snapshot methods
undergoes wide oscillations, depending on the quality (SNR and (u,v)-coverage) of
each dataset, while the dynamic range in kine dynamic varies less. This means that
kine dynamic is effective in improving the reconstruction quality of a poor dataset by
leveraging the information from prior and subsequent epochs.

To compare the effective resolution of the three imaging methods we computed the
2D spatial power spectrum (PS) of each frame. The power spectrum measures the
strength of the image signal at different spatial scales and drops in correspondence
of the smallest spatial scales resolved. The right panel in Figure 4.8 shows the PS
of individual frames (thin lines) and the average PS (thick lines). To determine the
resolution of the kine images, we blurred the images with Gaussian kernels of different
FWHM and we computed the x? between the PS of the blurred images and the PS
of the corresponding CLEAN model convolved with a 800 pas circular Gaussian. The
FWMH which resulted in the best x? fit of the PS, was then subtracted in quadrature
from the reference resolution of 800 pas, to obtain the effective resolution of the kine
reconstructions. We finally average the effective resolution across all epochs. From
this procedure we obtain a resolution of 127 pas for kine static and a resolution of 81
pas for kine dynamic, representing a improvement factor of 3.7 for kine static and
5.8 for kine dynamic with respect to CLEAN, whose average nominal resolution of
475 pas is set by the diffraction limit.
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Figure 4.8: Dynamic range and resolution comparison. (Left panel) Dynamic range
of the kine dynamic, kine static, and CLEAN reconstructions of 3C 345 observations. Con-
tinuous lines indicate the dynamic range of each individual frame, while the dotted lines
indicate the average value. (Right panel) Power spectrum of the kine dynamic, kine static,
and CLEAN reconstructions of 3C 345 observations. Thin lines indicate the power spectrum
of each individual frame, while the thick lines indicate the average value.
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Figure 4.9: Multi-day dynamic imaging reconstruction of M 87*, obtained from EHT
observations at 230 GHz, conducted in April 2017. The figure shows the four frames from the
kine video that correspond to the observations days. The top panel shows the total intensity
images, while the bottom panel shows the polarimetric images.
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We note that the amount of dynamic range and resolution improvements obtained
by kine are dependent on the quality and quantity of the observations, so they should
not be intended as absolute values valid for any kind of dataset.

4.6.2 Testing on M 87* multi-day observations

We also tested kine on real, multi-day observations of M 87* at 230 GHz from the EHT
campaign in 2017. Specifically, we used observations from April 5th, 6th, 10th, and
11th of 2017 (EHTC 2019b). We chose this dataset to test kine on a sparse (u,v)-
coverage and because it has already been imaged by the EHT Collaboration with
different static imaging methods (EHTC 2019d), by Carilli and Thyagarajan (2022)
with CLEAN, and by Arras et al. (2022) using dynamic imaging with the Resolve
pipeline, making it a suitable benchmark dataset to test kine reconstructions.

Dynamic imaging results from kine are presented in Figure 4.9, where the frames
corresponding to the four observation days are shown. The reconstructions fit the data
correctly, as demonstrated by the normalized x2s of the closure quantities used in the
imaging process. The images present a clear ring-like shape, with a brighter spot in the
south-west of the ring and a twisted polarization pattern in the south-east of the ring.
A faint extended emission is also visible in the south-east of the ring for all observed
days, consistent with the location of the M 87 jet observed at lower frequencies (see
e.g. Walker et al. 2018; Kim et al. 2018). To quantify the consistency of our results
with previous imaging of the dataset, we extracted the ring features from the frames
at each observed day. Our results are presented in Table 4.1 and show agreement with
values from the EHT Collaboration.

4.7 Appendix B. Extended data

Average velocity masks Average polarization masks

mask stacking (%)

-6 -8
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Figure 4.10: Staking of the instantaneous threshold masks applied in the computation
of the average velocity (left) and average fractional linear polarization (right), the darkest
color indicates 100% of epochs used in the average. These maps provide a measure of the
confidence in the estimation of average speed/polarization values in different areas of the jet.
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Figure 4.11: kine reconstruction of 3C 345, total intensity.
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Figure 4.12: kine reconstruction of 3C 345, polarization. All 116 polarization frames
of the dynamic imaging reconstruction of blazar 3C 345, from MOJAVE observations with
the VLBA at 15 GHz, by the kine method.
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d (pas)  w (pas) 1 (°) A fe
DIFMAP
April 5 372+24 282+29 163.8+£6.5 0.21+0.03 0.5
April 6 401+74 286+30 1621+9.7 0.24%0.08 0.4
April 10 40.2+£1.7 275+£31 175.84+9.8 0.20+£0.04 0.4
April 11 40.7+26 29.0+3.0 173.3+48 0.23+0.04 0.5
eht-imaging
April 5 39.3+16 162+20 1483+48 0.25+0.02 0.08
April 6 39.6+18 162+1.7 151.1+£86 0.25+0.02 0.06
April 10 40.7+16 15720 171.2+6.9 0.23+0.03 0.04
April 11 41.0+14 155+£18 168.0+£6.9 0.20=£0.02 0.04
SMILI
April 5 405+1.9 16.1+21 1542+71 0.274+0.03 7x107°
April 6 409424 16.1+21 151.7+£82 025+0.02 2x10~*
April 10 42.0+1.8 15.7+24 170.6+55 021+£0.03 4x10°°
April 11 423+1.6 15.6+22 167.6+28 0.22+0.03 6x107°
kine
April 5 41.2+40 182438 161.0£21.2 0.22+0.04 0.3
April 6 41.2+36 18.0+38 1572+£182 0.21+£0.05 0.3
April 10 42.3+2.7 173+£26 1728+£29.5 0.17+0.03 0.2
April 11 433£29 174+£27 169.1£33.2 0.16 £0.02 0.2

Table 4.1: Parameters of the M 87* black hole shadow. Diameter d, width w, orienta-
tion angle 7, asymmetry A and floor-to-ring contrast ratio f. of the M 87* black hole shadow.
kine results are compared with results from static imaging with DIFMAP, eht-imaging, and
SMILI from the EHT imaging of M87 (EHTC 2019d).
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Dynamic imaging of Sgr A*

Adapted from

Validation of horizon-scale Sagittarius A*
video reconstruction with kine

A. Fuentes’, M. Foschif, et al.

In preparation, (2025)
fThese authors contributed equally to this work

Abstract

The hot plasma orbiting Sagittarius A* (Sgr A*), the supermassive black hole at the
Galactic Center, exhibits a variability time-scale of minutes. The Event Horizon Tele-
scope is the only facility capable of resolving the horizon-scale structure near Sgr A*,
but this variability introduces unprecedented challenges for image reconstruction. In
this work, we extend the capabilities of our novel dynamic imaging algorithm, kine, to
tackle the specific challenges of EHT data, and we apply it to a large suite of synthetic
data generated after EHT observations of Sgr A* on 2017 April 11. The aim is to assess
kine’s ability to reconstruct the ground-truth dynamics of these models with the ex-
tremely sparse coverage of EHT observations in 2017. We test kine against a variety of
static and dynamic geometric models and general-relativistic magneto-hydrodynamic
black hole simulations, which are specifically designed and selected to test different
forms of source morphology and intrinsic variability. The simulated datasets were gen-
erated with the expected thermal noise and gain corruption, as well as the corruptions
introduced by interstellar scattering. We prove that kine can discriminate and recover
static models without introducing any motion, while recovering with high precision the
dynamics of both coherent and incoherent models, both tangential and radial motion,
with orbital speeds ranging from 20 to 180 min, and different relative flux densities.
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In the case of GRMHD models, which span different inclination angles, spins, mag-
netization, and electron temperature, we show that kine is capable of recovering the
correct morphology, position angle, pattern speed, and linear polarization orientation
of all models resembling Sgr A* properties. For GRMHD models disfavored by Sgr A*
observations, kine is not always able to provide a good reconstruction, but is still able
to robustly recover the direction of the pattern speed and the orientation of the linear
polarization. Remarkably, kine can recover also more subtle features like spiral arms.
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5.1 Introduction

The Sgr A* black hole at the center of the Milky Way is one of the two supermassive
black holes that can be resolved at horizon scales by Very-Long Baseline Interferometry
observations with the Event Horizon Telescope (EHT, EHTC 2022a). Imaging Sgr A*
is more challenging compared to other sources like M 87* because of the interstellar
scattering produced by foreground material in the galactic plane and because of the
intrinsic intra-day variability of the source. EHT observations are extremely sparse
and rely heavily on the aperture synthesis technique, which exploits the rotation of the
Earth to sample additional spacial frequencies, under the assumption that the source
remains unchanged during the observations. This is problematic in the case of Sgr A*,
whose emission varies on timescales of 5 to 30 minutes (Wielgus et al. 2022), that are
significantly shorter than the few hours required for a full observation. A possible way
to address variability and recover its spatial distribution is with dynamic imaging.

Dynamic imaging aims at recovering a video of the source, in which frames are con-
strained to the corresponding instantaneous observations and correlations are enforced
across frames from different times to make up for the sparsity of the instantaneous cov-
erage. Reconstructing the flux density distribution not only in space but also in time
adds an additional degree of freedom, compared to static imaging, while the data con-
straints remain the same. This makes the VLBI imaging problem even more ill-posed
than in static imaging, so the imaging algorithms need to rely more on space-time
regularization, i. e. enforcing space-time correlations in the output video. Different
dynamic imaging methods implement regularization in different ways. Regularized
Maximum Entropy (RML) methods, like eht-imaging (Johnson et al. 2017), DoG-HiT
(Miiller and Lobanov 2023), or ngMEM (Mus and Marti-Vidal 2024), recover a video
by optimizing the values of its pixels so to minimize a loss function constraining the
video to the data. In this case, regularization is provided by explicit regularizer terms
added in the loss function. Bayesian methods, like StarWarps (Bouman et al. 2018),
or Resolve (Arras et al. 2022), assume a parametrized distribution of the video’s pixel
values and solve for the parameters that yield the most likely video given the data con-
straint. In this case, regularization is introduced by assuming a correlated probability
distribution of the pixels.

Recently, as described in Chapter 4, we proposed a new approach to dynamic
imaging using neural field representations. We developed kine, an imaging algorithm,
which employs a neural network to model the flux density distribution as a continuous
parametrized function, which is optimized so to minimize a loss function containing
the flux density video to the data (Foschi et al. 2025b). The neural network employed
in the algorithm is affected by spectral bias, meaning that it tends to fit for the
lowest frequencies first and thus it is not able to produce high resolution outputs.
This property provides implicit space-time regularization of the video, without the
need of adding explicit, possibly misleading regularizer terms in the loss function. We
have proven the validity of the method in the case of multi-epoch observations of
evolving blazar sources with the Very Long Baseline Array (Foschi et al. 2025b), and
demonstrated the resolution and dynamic range improvement provided by kine over
other imaging algorithms. However, before applying the method to Sgr A* observations
with the EHT, we need to demonstrate that kine is able to recover a reliable video
from data with the same (u,v)-coverage, signal-to-noise ratio (SNR), gain corruption,
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and scattering corruption of real EHT data of Sgr A*. The purpose of the present
work is to determine whether the coverage and noise properties of EHT observations
of Sgr A* on April 11*" 2017 are good enough to allow reconstruction of a dynamic
imaging video with the kine pipeline.

Therefore, we used kine to image synthetic data produced from a variety of mod-
els, with different morphologies, motion, and amount of variability. In particular we
considered static geometric models, geometric models with simple dynamics, and ray-
traced videos of more realistic general-relativistic magneto-hydrodynamics simulations
of accreting black holes. The data are simulated with the same properties of the EHT
observations of Sgr A* on April 11*" 2017, since that is the dataset that we aim to
image. Specifically, these observations hold the largest time window of the 2017 EHT
campaign over which the instantaneous (u, v)-coverage is maximized. In addition, this
window starts only ~2 hours after an X-ray flare, making it potentially interesting for
reconstructing source dynamics. More details on the observed data and the scientific
motivation driving this analysis may be found in EHTC (2025). A second goal of this
work is to test the extent of the range of possible videos that can be reconstructed
by kine from data with this coverage. Specifically we test the limits of the speed
of moving objects that can be recovered and the flux ratio between distinguishable
features in the video.

In section 5.2, we provide a brief description of the general kine imaging algorithm,
followed by an explanation of the algorithm variations and the specific pipeline that
were developed to image EHT observations of Sgr A*. In section 5.3 we show the
application of the pipeline to imaging synthetic data, proving the method’s ability to
recover the correct ground truth over a variety of sources, and exploring the limits of
its capabilities. Finally, in section 5.4, we discuss the method’s overall performance
and draw conclusions on the robustness of the recovered videos.

5.2 Methods
5.2.1 The kine imaging algorithm

kine is a novel algorithm for VLBI video reconstruction which models the full polari-
metric brightness distribution of a source trough a coordinate-based neural network
(Foschi et al. 2025b). The algorithm draws inspiration from Neural Radiance Field net-
works (NeRFs, Mildenhall et al. 2021), and models the Stokes parameters (Z, Q,U, V)
of the recorded signal as a continuous function over space and time, parametrized
through a Multi-Layer Perceptron (MLP, Popescu et al. 2009):

(I,mg,x,mc)(x,yJ) :MLPW($»y7t)ﬂ (5'1)

where (z,y,t) are the real-valued domain coordinates and W are the parameters of
the network. kine recovers the degree of linear polarization my, the electric vector
position angle x, and the degree of circular polarization m., and then applies a trivial
transformation to obtain Q, U, and V. Similarly to other forward-modeling algorithms,
the optimization of the network’s parameters is performed through the minimization
of a x? loss between the observed data and the recovered video, evaluated over the
points of the Fourier space sampled by the interferometer at any given time. The
optimization step is repeated iteratively until convergence of the loss function. The
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network parameters are optimized only with respect to the data to be imaged, making
the algorithm completely unsupervised.

kine models the temporal evolution of the source by simultaneously fitting the
frames in the video to all available observations. In the algorithm, regularization in
space and time is not imposed via explicit prior constrains but rather learned from
the data itself by leveraging the spectral bias of coordinate-based MLPs (Rahaman
et al. 2019). It has been proven that MLPs output first a low frequency image or video
and gradually introduce higher frequencies as the optimization continues. However,
convergence is reached before overfitting, preventing the appearance of high-frequency
artifacts. A complete description of the method can be found in Foschi et al. (2025b).

5.2.2 New additions to kine

The rapid variability of the horizon-scale plasma accreting onto Sgr A*, in conjunc-
tion with the extremely sparse sampling of the EHT over 1 minute intervals, poses
specific challenges to video reconstruction. Additionally, visibility phases at 1mm
are quickly corrupted by fluctuations of the atmosphere, making the exploitation of
complex visibilities as a data product impossible, even assuming a perfect visibility
amplitude calibration. Closure phases, on the contrary, are resilient to changes in
the atmosphere (Jennison 1958; Rogers et al. 1974; Twiss et al. 1960), at the cost of
providing less data constraints than visibility phases and no information about the
source absolute position.

This, in combination with the fact that kine does not impose any regularization
on how or where the brightness distribution should be localized in the field of view,
makes the recovered emission drift slightly from frame to frame. While this effect does
not interact with the capacity of kine to reconstruct the correct dynamics, it requires
video post-processing to remove the drifting, which is not always trivial and can in-
duce interpretation errors. We overcome this issue by assuming that the brightness
distribution of an evolving source can be decoupled into a persistent and an variable
component. As a consequence, the persistent, or static, component effectively anchors
the variable component to the static emission and the drifting disappears. Both the
persistent and the variable component can be as small as necessary, resulting in either
a purely dynamic or purely static emission. While this approach can be extended to
all Stokes parameters, in practice we only need to consider this decoupling for total
intensity. Once a good reconstruction in Stokes 7 is achieved, visibility phases can be
recovered through self-calibration and Stokes Q, U, and ) can be then reconstructed
using complex visibilities. We implement this in kine by modeling the static and
dynamic components through separated MLPs (Figure 5.1), whose output is added to
represent the complete predicted video. That is:

I(l’,y,t) = MLPd,W(l'vy) + MLPS,W(mayvt) . (52)

The optimization of the two networks’ parameters is carried out in parallel, as the
X2 loss is computed on the video resulting from the addition of the two networks.
We found that, as a byproduct of the parallel but separate modeling of the static
and dynamic component, kine can recover the time-dependent true structure from
synthetic data with significantly higher accuracy.

In order to effectively decompose the video into a static and dynamic compo-
nent, the total flux assigned to each components must be constrained. Otherwise,
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Figure 5.1: Architecture of the kine network. Diagram of the specialized kine network
architecture developed for the imaging of Sgr A* observations by the EHT.
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the dynamic component could absorb the totality of the emission, leaving the static
component to zero and failing the purpose of the decomposition. The lower limit of
the dynamic component’s total flux is set by the difference between the minimum
and maximum value of the source’s light curve. Nonetheless, the dynamic component
may include persistent dynamic emission with constant flux density. We therefore
incorporate an extra term in the loss function which attempts to find the dynamic-to-
static flux density ratio by penalizing stationary features in the dynamic component.
Specifically, the resulting loss term is expressed as:

L= ZXQ(ﬁ’ D)+ Zmzax MLP g w(z,y,t) , (5.3)
D

T,y

where the first term accounts for the goodness-of-fit between the data products D
computed from the video reconstruction and the observed ones D, while the second
encourages persistent emission to be assigned to the static component, ensuring the
dynamic one only includes variable emission. We introduce an initial imaging round,
employing the above loss function to find the optimal dynamic-to-static flux ratio. In
the following imaging rounds the total fluxes of the two components are fixed accord-
ing to the obtained ratio and the flux-ratio term is removed from the loss function.
In practice, we enforce the output of both the static and dynamic networks to have a
total flux density of 1 Jy. Then, before addition, we rescale their flux density with the
appropriate values Sgatic and Saynamic. In contrast to just enforcing each network’s
output to have the corresponding flux density, this approach has the benefit of nu-
merical stability, maintaining the network’s output always in a similar range of values.
The final loss function then takes the form:

L= £data + ‘Cﬂux P (54)
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where

Lava=Y_x* (D.D) (5.5)
D

Lo = (Z MLP,(z,y) — 1) + (Z MLPy(z,y,t) — 1) . (5.6)

z,y

while the total intensity output is obtained by:
I(fE, Y, t) = Sstatic N MLPS,W (IE, y) + denamic : MLPd,W(x, Y, t) . (57)

The static and dynamic MLPs consist of 4 and 6 fully connected layers with 256
neurons each, respectively. We choose a different number of layers because recon-
structing a single image (static) versus a set of them (dynamic) requires higher net-
work complexity. Both networks have a one-dimensional final layer where the output
is passed through a sigmoid function to enforce positivity in the output Z(x,y,t). For
the hidden layers, we use the Gaussian Error Linear Unit function (GELU, Hendrycks
and Gimpel 2016) and two “sharper” variants, which are given by the function:

f(z) = 0.5z (1 + tanh [\/2/7 (az + 0.044715x3)D : (5.8)

where a = 1 for the standard GELU, and a = {3,6} for the sharper variants. These
two functions are compared in Figure 5.2 and they are used to introduce increasing
levels of complexity depending on their sharpness. We further discuss their use in the
description of the pipeline. We choose the Adamax optimizer for backpropagation, a
variant of the popular Adam optimizer (Kingma and Ba 2014) which provides better
results with high learning rates, which in our case are set to 10~2 for initialization and
to 1072 and 10~ for the optimization of the dynamic and static network, respectively.
We use a higher learning rate for the dynamic component so that it converges faster,
preventing the static network from interpreting intrinsic variability as high-frequency
artifacts in the static component. In this work, the network’s weights are pre-optimized
to output a given brightness distribution, in contrast to a typical random He uniform
(He et al. 2015) weight initialization. This initialization intends to alleviate some of the
large uncertainty associated with the imaging problem addressed here, but remains as
agnostic as possible with respect to the true source morphology. In a similar fashion to
RML methods (e.g. EHTC 2022c), we initialized the network’s weights to a uniform
disk of 80 pas diameter blurred with a circular Gaussian of 20 uas full width half
maximum (FWHM). In later stages of the imaging process, we switch to a more
informed initialization, like the median image reconstructed in the previous step. We
further discuss this choice in the pipeline description. During initialization we use a
higher learning rate because the absence of the undersampled Fourier operator makes
convergence faster.

In addition to unknown phase gains, EHT observations of Sgr A* also contain small
residual amplitude gains. However, the sparsity of the instantaneous 2017 EHT array
makes the information contained in closure phases and (log) closure amplitudes alone
insufficient to constraint dynamics on minute time-scales. We therefore incorporate
(log) visibility amplitudes as an additional data constraint, while fitting for amplitude
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Figure 5.2: kine activation functions. used at different imaging steps. These are GELU,
or Gaussian Error Linear Unit (blue), sharpGELU 1 (orange), and sharpGELU 2 (green), two
custom variants that compress the range of negative values while preserving its differentia-
bility at any point.

gains simultaneously with the video reconstruction process. The joint optimization
of the output video and amplitude gain corrections enables the full exploitation of
visibility amplitudes, without introducing artifacts derived from calibration errors.
Visibility amplitude gains are station-dependent real-valued multiplicative factors |g;|
which relate measured visibility amplitudes |V; ;| and true visibility amplitudes |V ]|
as:

Vil = lgil il ™ Vil s (5.9)

for a baseline formed by telescopes ¢ and j. In kine, we model time-dependent ampli-
tude gains through a set of ns; X n; learnable parameters, initialized to 1, where n is
the number of observing sites and n; the number of time segments (or frames) in the
video. This set of parameters includes the amplitude gain corrections |g; | for every
telescope i at any time instant ¢, and is applied to the measured data before com-
puting the x? loss term against the visibility amplitudes derived from the predicted
video. We constraint the range of possible amplitude gains values between 0.85 and
1.5, which amply accounts for the expected deviations in the 2017 EHT data (EHTC
2019¢c; EHTC 2022b; Issaoun et al. 2022). To account for the initial states of the net-
work, in which the output video is still far from the optimal solution, we schedule the
learning rate of the gain parameter exponentially from 5 x 107 to 1 x 1073 between
the first and last iteration of the joint optimization. We discuss kine’s effectiveness
in recovering amplitude gains in Appendix B (section 5.6).

Contrary to the dataset imaged in Foschi et al. (2025b), where the vast amount
of data provided enough information to easily recover the multi-epoch dynamics of
the target source, we find that in the case of extremely sparse instantaneous coverage,
such as the one we discuss in this work, positional encoding (Vaswani et al. 2017)
of the input time coordinate allows for more expressivity of the dynamic network
(Rahaman et al. 2019; Mildenhall et al. 2021) and therefore a notable improvement
on the recovered dynamics. Effectively, the input coordinates are mapped to a higher
dimensionality vector, according to the R — R2L+! transformation:

X — (x,sinx, cosx, ...,sin 27 1x, cos 217 1x) | (5.10)
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Figure 5.3: The kine imaging pipeline for EHT Sgr A* data. Reconstructing the
variable Stokes I emission consists of three steps: finding the appropriate flux density of the
static and dynamic component, refining the network’s initialization, and performing the final
imaging. Polarization is then recovered using the final Stokes I video for data self-calibration
and as an anchor for Stokes Q and U.

where L is the positional encoding degree. In this work we set L = 2 for spatial
coordinates and L = 7 for the temporal coordinate. These values provide the best
results given the space and time resolution of the measured data.

5.2.3 Sgr A* pipeline

The imaging procedure designed for the video reconstruction of synthetic and real
Sgr A* EHT data begins with three steps of Stokes Z imaging, aimed at finding the
appropriate flux density of the static and dynamic components, refining the networks
initialization and obtaining the final video. These are followed by a self-calibration step
and one last imaging step for Stokes Q and ¢. In this work we do not attempt to recover
Stokes V. Prior to imaging, we time-average the data into 60 s intervals within the time
window with optimal coverage, that is, the time window during which the maximum
number of antennas are observing simultaneously. This ~ 3 hr segment occurs between
~10.85UT and ~14.05UT (see Farah et al. 2022; EHTC 2022c¢, for further details).
This results in 99 data segments, or frames. Additionally, we add a 1% extra error bud-
get to account for non-closing errors. As mentioned above, we fit for log-amplitudes
(with a simultaneous amplitude gain fitting), closure phases, and log-closure ampli-
tudes (see Thompson et al. 2017, for a complete introduction to VLBI imaging and
data products). Visibility amplitudes are rescaled so that max; ; |V; ;| = 1 Jy and they
are restored to their original value once the final video solution is achieved. The num-
ber of iterations performed in each step was chosen so that convergence was achieved
for all the models considered. In the following we describe each of the steps, which
are also summarized in Figure 5.3.

1. We perform 12000 optimization iteration with a coarse coordinate grid which
outputs a 16 x 16 pixel video reconstruction. The static and dynamic networks
are both initialized to a 80 pas diameter disk contained in a 160 pas field of view
(FOV). We optimize the network by performing gradient descent on the loss func-
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tion defined in Eq. 5.3, which properly separates the flux density of the static
and dynamic component. For instance, the geometric model mring+hsCW0.60
has a dynamic flux density of 0.6 Jy out of the total 2.7 Jy, that is, 22 % of the
total flux density. With this approach, kine outputs a dynamic component with
27 % of the total flux density, while being completely agnostic to the ground-
truth value. In this step, we discard the final video reconstruction and save the
found flux ratio for the next steps.

. We initialize again the static and dynamic networks to a disk, enclosed in a
160 pas FOV. The input coordinate grid is sampled at 32 x 32 spatial locations.
After convergence is reached, we upscale the final video reconstruction by sam-
pling the network at twice the number of spatial locations, obtaining a video
of dimensions 99 x 64 x 64. In this and the remaining steps, the networks are
optimized according to the loss function defined in Eq. 5.4, that is, the static
and dynamic outputs are enforced to have a total flux density of 1Jy and then
rescaled with the time-dependent flux ratio. We then estimate the intrinsic clo-
sure phase variability in the data by computing the Q-metric (Roelofs et al.
2023) on the baseline triangle ALMA-SMT-LMT and we consider the following
scenarios. For Q-metric values smaller than 0.4, that is, the upper limit obtained
for purely static models (see Fig. 12 in EHTC 2022b), we consider the data to
have zero or residual variability. In this case, the static flux density Sstatic 1S
set as the value recovered at the previous step. Otherwise, if the Q-metric value
exceeds 0.4, we set the static flux density as the minimum value between the
static flux density found before and 90% of the light curve minimum:

(5.11)

Sstatica lf Q < 0.4
Sstatic = . . .
min {Sstatic , 0.9 - min Siota1}, otherwise

The networks are optimized for 10000 iterations, reaching x? loss values < 1

for all data products. In general, we achieve a satisfactory video reconstruction
already in this step, especially for geometric models.

. In this step we refine the networks initialization in order to capture more subtle
details, which especially benefits complex datasets like GRMHD models. The
static network is initialized to the median frame from the video reconstructed in
the previous step. The dynamic network is also initialized to the median frame,
but blurred with a Gaussian kernel of 30 pas FWHM. We increase the FOV to
200 pas in order to allow for more extended emission. The input coordinate grid
is now sampled at 64 x 64 spatial locations, as well as the final network state,
obtaining a final video reconstruction of dimensions 99 x 64 x 64. We optimize
the networks for 5000 iterations.

. We self-calibrate the data in phase and amplitude to the video reconstructed
in step 4 and use the self-calibrated data in the final imaging round to recover
the linear polarization vector field. In this step, we fix Stokes I using the final
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video reconstruction from step 4 and fit for the degree of linear polarization m;
and the electric vector position angle x. These quantities are then transformed
to obtain Stokes Q and U (Foschi et al. 2025b). In the case of polarization,
the network consists of a single MLP with identical configuration as the total
intensity dynamic network, except for the number of output dimensions, which
is 2 for polarization, and the number of layers, which is 4 for the polarization
network. The loss function takes the form of a x? function between the measured
complex visibilities and those recovered for Stokes Q and U. The network is
initialized to a flat video with constant m; and y values and dimensions 99 X
128 x 128 x 3, where the last dimension is the polarization channel (Z, Q, and
U). We found that a positional encoding of degree L = 4 in time (L = 0
for space coordinates) provides the best results. Other than this, the network
hyperparameters remain unchanged.

As proven in the next section, these steps ensures optimal results in total intensity
for the wide variety of synthetic data considered. At the same time, this approach
allows us to remain as agnostic as possible with respect to the ground-truth proper-
ties and resilient to residual amplitude gains in the data, which we can successfully
disentangle from intrinsic variability.

5.3 Results
5.3.1 Imaging synthetic data

Following the suite of validation tests outlined in Dahale et al. (2025), we tested
kine’s imaging ability on synthetic data generated from various ground truth models,
specifically from static geometric models, dynamic geometric models, and GRMHD
simulation models. Static models were chosen to test that time variability was not
spuriously introduced by the imaging algorithms. Dynamic geometric models served
as simple motion recovery tests of easy interpretation, while GRMHD simulations
represented the most realistic test case. For all models, we generated synthetic data
with the EHT coverage during the optimal time window on April 11, 2017. Realistic
thermal noise, gain errors, and scattering corruption were added to the synthetic data
(details of the data generation are explained in Dahale et al. 2025 with a summary of
the ground truth models properties in Table 1). All the results presented are on-sky,
meaning that we are not correcting scattering effects (descattering) by inflating the
noise budget to account for refractive scattering or by de-blurring the reconstructed
videos to account for diffractive scattering.

Static geometric models

The first validation test consisted in imaging static geometric models of various mor-
phologies. The goal of the test was to make sure that kine is able to reconstruct
the correct total intensity morphology and polarization pattern of the models with-
out introducing any significant motion. In particular, we want to ensure that the
reconstructions:

1. fit the data correctly,

2. do not introduce additional dynamics when none are present,
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Figure 5.4: Static models reconstructions. (Top row) Ground truth static geometric
models. (Middle row) kine reconstructions. (Bottom rows) Cross correlation between the
ground truth and the reconstruction, in total intensity (I), polarization intensity (P), and
EVPA (x). The values in parenthesis are the minimum cross correlation thresholds which are
defined in Dahale et al. (2025). The figure displays one frame of the full video reconstructions.

3. recover the correct morphology for Stokes I, Q, U.

We considered six different models, which are shown in the top row of Figure 5.4.
The corresponding reconstructions by kine are displayed in the second row of Fig-
ure 5.4. The figure shows one representative frame of the full videos. The goodness of
fit is evaluated with the time-averaged x? of closure quantities in total intensity and
polarization.

As shown in rows 1-6 of Table 5.3 in Appendix A (section 5.5), kine provides
x2 ~ 1 for all static models, showing that the reconstructions fit the data appropri-
ately. The reconstructions do not present any additional motion, so we can conclude
that indeed the kine pipeline does not introduce any motion when there is not any in
the ground truth. We test the fidelity of image reconstruction by computing the cross
correlation between the ground truth models and the reconstructed videos (lower rows
of Figure 5.4). For all models except the point source, the reconstructions achieve
cross correlation values of 0.97-1.00, significantly higher than the required thresholds
(reported in parenthesis in Figure 5.4, see Dahale et al. 2025 for the threshold defini-
tion). For the point source, the total intensity cross correlation is still higher than the
threshold, though slightly lower compared to other models. Indeed, from Figure 5.4,
we see that the reconstruction presents a small peak with brighter emission and a halo
of more diffuse emission, though the peak is misplaced compared to the ground truth.
We attribute the slightly worse performance of kine on the point source model to the
low flux density of the diffuse emission, which is at the threshold of the dynamic range
that we can expect to recover with the sparse (u,v)-coverage of EHT observations
in 2017 (EHTC 2022b). For polarization, the point source EVPA cross correlation
is excellent, while the linear polarization one is slightly below the required threshold.
We attribute this to the suboptimal total intensity reconstruction, which is needed for
the reconstruction of the polarization image.
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We can conclude that the image fidelity is excellent for all models in both total
intensity and polarization, except for the absolute value of the point source’s linear po-
larization, which is below the threshold. We remark that the point source reconstruc-
tion does not resemble any other model morphology, meaning that the kine pipeline is
able to fully distinguish different morphologies and reconstruct them without adding
any additional variability.

Dynamic geometric models

The second validation test required imaging simple variable geometric models, the
majority of which consisting of an m-ring model (Johnson et al. 2020; Roelofs et al.
2023) plus a moving Gaussian hot spot. The goal of the test was to make sure that
kine is able to recover qualitatively and quantitatively the simple motion present in
the models. In particular, we want to ensure that the reconstructions:

1. fit the data correctly,

2. recover coherent orbital motion, with the correct direction and speed,
3. recover non-orbital motion, with the correct direction and speed,

4. recover incoherent motion without bias towards coherent motion,

5. recover dynamics in linear polarization.

We considered seven different dynamic models, which are shown in the top row of
Figure 5.5, while the corresponding kine reconstructions are displayed in the second
row and the dynamic component of the reconstructions is highlighted in the third row.
The figure shows one frame of the full videos which are linked in the caption. To test
the recovery of orbital motion, we used two m-ring models, with a clockwise (CW)
and a counterclockwise (CCW) orbiting hot spot with a period of 80 min. To test
the recovery of non-orbital motion, we used an m-ring model with a hot spot crossing
the ring and an m-ring model with an off-centered orbiting hot spot. To test bias
towards coherent motion, we used an m-ring model with a randomly appearing and
disappearing bright spot. And finally, to test the recovery of polarimetric dynam-
ics we employed an m-ring model with an orbiting polarized hot spot and an m-ring
model with a spiral polarimetric pattern with varying EVPA pitch angle. From the
video in Figure 5.5 we see that the reconstructions provide a high visual resemblance
to all ground truth model, both in the full video and in its dynamic component. In
the following we quantify the reconstruction fidelity, with particular focus on physi-
cally significant observables such as the ring position angle and the speed of moving
components.

The goodness of fit of the reconstructions is evaluated with the time-averaged x?
of closure quantities in total intensity and polarization. As shown in rows 7-13 of
Table 5.3 in Appendix A (section 5.5), kine provides x? ~ 1 for all models, showing
that reconstructions fit the data appropriately. The quality of the reconstructions is
evaluated via various metrics (full details and definitions in Dahale et al. 2025). We
measure image fidelity with the normalized cross correlation between ground truth
frames and reconstruction frames. The cross correlation is computed separately on
the median frame (“static component”) and on the residual between the median and
the full video (“dynamic component”). The minimum cross correlation thresholds
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Figure 5.5: Dynamic geometric models reconstructions. (Top row) Ground truth
dynamic geometric models. (Middle row) kine reconstructions. (Bottom row) Dynamic
component of the kine reconstructions. The figure displays one frame of the full video
reconstructions available at https://github.com/mariannafoschi/phdthesis/blob/main/
chapter4-videol-geometric.gif. A selection of frames is shown for each model individually
in the Appendix of the thesis.

are modulated as a function of the instantaneous (u,v)-coverage and visibility SNR.
We assess the ability to recover motion by comparing the position of the hot spot,
which is located by fitting a crescent + Gaussian model to each frame of the video.
To evaluate the fidelity of the linear polarization we focus on the phase /35 of the
m = 2 mode of a S, decomposition of the polarization field (Palumbo et al. 2020),
which is sensitive to the dominant orientation of swirl in the EVPA pattern. Finally,
we evaluate how well we recover the speed of orbiting components by comparing the
pattern speed (Conroy et al. 2023) of the ground truth and the reconstruction. We
present the metrics results for all geometric models in Figure 5.6, which displays the
cross correlation of the dynamic component in the left column, the position angle, the
linear coordinate, or the /B35 parameter in the central column, and the pattern speed
autocorrelation plots in the right column.

Regarding the recovery of orbital motion, we consider the first two models with
clockwise and counterclockwise orbiting models. For both models the dynamic cross
correlation is above the required threshold in the vast majority of frames (100% and
85%) and the hot spot position is recovered correctly almost for the totality of frames
(96% and 97%). The pattern speed is also recovered correctly, in direction and mag-
nitude, within one sigma uncertainty (details in Dahale et al. 2025). In both cases
the quality of the reconstruction is excellent, meaning that the pipeline is fully able
to recover and distinguish clockwise motion from counterclockwise motion. Regarding
the recovery of non orbital motion, we consider the model with the crossing hot spot
and that with the off-centered orbiting hot spot. Also in this case, the dynamic cross
correlation is mostly above the threshold (80% and 100%) and the hot spot position
is correct for the majority of frames (85% and 100%). The recovered pattern speed of
the off-centered hot spot is within one sigma from the true value, while the crossing
hot spot pattern speed is two sigma apart from the 0 speed value of the ground truth.
This slight deviation from a null pattern speed is caused by a minor fidelity loss in
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the video around 12.80 UT, which is limited to half a scan and does not affect the
correct recovery of the motion in other frames. Therefore we conclude that the kine
pipeline is able to recover with good precision the correct direction and magnitude of
both orbital and non orbital motion.

Regarding the recovery of incoherent motion, the dynamic cross correlation of
the incoherent hot spot model is slightly below the threshold for many frames (19%
passing percentage). However, the position of the hot spot is recovered correctly for
the majority of frames (79%) and the recovered pattern speed is 0, in agreement with
the ground truth. From this, we can conclude that the pipeline does not hallucinate
coherent motion in the presence of incoherent variability, so there is no bias towards
either coherent or incoherent motion. The pipeline is also able to track the position of
incoherent brightness changes correctly, even though the total flux attributed to local
brightness increases might be slightly underestimated.

The recovery of polarization variability is tested for a polarized orbiting hot spot
and for a polarization field with changing orientation. In this case, we considered
the cross correlation of the linear polarization image P = \/Q? + U? and the EVPA
image x = %arctan(U /@), instead of the total intensity I image. To quantify the
fidelity of the recovered variable features, we considered the position angle for the first
model and the variation of the Zf, parameter for the second one. For the polarized
hot spot, the EVPA and polarization intensity cross correlations are higher than the
threshold on the majority of cases (58% and 88%). The lower cross correlation in P is
likely due to a very low polarization signal outside the hot spot region, combined with
a suboptimal recovery of the polarization intensity distribution. However, we note
that the orientation of the EVPA pattern is well recovered both inside and outside
the hot spot. Regarding the polarization model with changing orientation, the P and
EVPA cross correlations are above the thresholds for 80% and 98% of the frames. The
position angle and the Z3; parameter are also recovered correctly for almost all frames
(95% and 98%). From these tests we can conclude that kine is fully able to recover
both local and global changes in the linear polarization field intensity and orientation.

GRMHD simulation models

The last validation test consists in imaging synthetic data obtained from ray-traced
videos of GRMHD simulations from the standard PATOKA GRMHD library (Wong
et al. 2022; Dhruv et al. 2025). These models should present higher complexity and
variability than the geometric models and hence provide a more difficult and realistic
test case. This final test aims at proving that the kine pipeline can provide good
reconstructions of complex realistic black hole videos. Given the limited resolution of
the EHT array in 2017, we do not expect to recover the fine details of the simulations,
but rather we aim to reach high enough fidelity to extract relevant physical information
from the reconstruction. Specifically, we want to ensure that the reconstructions:

1. Fit the data correctly,
Recover the correct morphology and orientation for Stokes I,
Recover the correct morphology, orientation, and dynamics for Stokes Q, U,

Recover coherent orbital motion with the correct direction,

AN el

Recover coherent orbital motion with the correct speed.
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Figure 5.7 GRMHD models reconstructions. (Top row) Ground truth GRMHD models.
(Bottom row) Corresponding kine reconstructions. The figure displays one frame of the full
video reconstructions available at https://github.com/mariannafoschi/phdthesis/blob/
main/chapter4-video2-grmhd.gif. A selection of frames is shown for each model individu-
ally in the Appendix of the thesis.

Out of the 360 different simulations in the GRMHD library, we selected a sample
of 8 models, designed to span all unique simulation parameter values at least once,
with an emphasis on models favored by the data. The parameters characterizing each
simulation are the magnetic flux mode (MAD/SANE), the dimensionless black hole
spin, the viewing inclination, and the electron temperature parameter. The parameter
combinations corresponding to the selected models are listed in Dahale et al. (2025),
together with more details about the simulations. We selected 3 GRMHD models
(grmhd1, grmhd2, grmhd8) for the main validation tests. Being all MAD models,
with prograde spin, high electron temperature, and relatively face-on inclination, the
selected models all fall in the region of the simulation parameter space that is favored
by Sgr A* observational constraints (EHTC 2022e¢; EHTC 2024). This choice was
made to ensure that the pipeline was able to correctly recover models that behave
similarly to what is expected of SgrA*. To these models we added a variation of
grmhd2 which included an additional geometric orbiting hot spot. Ideally, the imaging
pipeline should also be flexible enough to recover morphologies and behaviors that are
unlikely for Sgr A*. This is considered as an extra test that is not required to fulfill
the validation. Its results are presented in section 5.3.2, and include testing on the
grmhd3, grmhd4, grmhd5, grmhd6, and grmhd7 simulations, which include combinations
of retrograde, SANE, edge-on, low electron temperature, and zero-spin models.

The ground truth models are shown in the top row of Figure 5.7, with the corre-
sponding kine reconstructions in the second row. The figure shows one frame of the
full videos which are linked in the caption. The quality of the reconstruction fit to
the data is assessed by the x?s of closure quantities, which are reported in rows 14-17
of Table 5.3 in Appendix A (section 5.5). The total intensity and polarimetric cross
correlation, the position angle, the /35 parameter, and the pattern speed metrics are
shown in Figure 5.8.

From the video in Figure 5.7, we see that all reconstructions recover variable asym-
metric rings, similar to the ground truth models. This is reflected by the high values
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Figure 5.8: GRMHD models evaluation metrics. (Left column) Total intensity cross
correlation (I, in blue) and polarimetric cross correlation (P in green, x in red) between
reconstruction and ground truth. (Center column) Position angle (PA) of the ring and Zf3,

parameter of the polarization vector field.

(Right column) Pattern speed autocorrelation

plots, with the model one on top and the reconstruction one on the bottom. The pattern
speed is reported in deg/GMc_3.
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of the total intensity cross correlation, which is above the threshold for the majority of
frames for all models (90%, 85%, 85%, 53%). In grmhdl, the position angle is recov-
ered within 1 sigma of the true one for half of the frames and within 2 sigmas for all
frames. For the other models, the position angle is recovered within 1 sigma for the
great majority of frames (100%, 85%, and 88%). The position angle errorbars vary
from model to model depending on the model’s asymmetry. In fact, for models with
low asymmetry, the peak position angle is widespread and therefore less constrained,
while in the case of higher asymmetry the PA is more localized. We observe that
the position angle in grmhd1 is recovered with a slight positive bias. We attribute
this to the widespread position angle of the model, combined with the presence of an
extended arm. However we do not consider this to be statistically relevant because
we don’t observe the same bias in other models and because the recovered PA is still
within the errorbars. Based on these results we can state that the pipeline is able to
recover the correct morphology and orientation of the GRMHD models under consid-
eration. The recovered pattern speed is in agreement with the true one within 1 sigma
for all the considered GRMHD models, meaning that the pipeline is able to recover
both the direction and the magnitude of the velocity of features and patterns orbiting
around the black hole. In particular, considering grmhd2 and grmhd2+hs2, we see that
the reconstructions successfully recover different pattern speeds showing that coherent
orbital motion can be distinguished from the filamentary orbiting patterns typical of
GRMHD simulations.

Regarding polarimetric reconstruction, for all models except grmhd2, the EVPA
cross correlation is above the threshold for the majority of frames, with occasional
drops. The cross correlation of the linear polarization magnitude, instead, oscillates
around the threshold, and for most models it is often slightly lower than the threshold.
This results in a percentage of passing frames for P and x of (58%, 83%) for grmhd1,
(19%, 42%) for grmhd2, (31%, 60%) for grmhd2+hs2, (40%, 58%) for grmhd8. The
phase of the B parameter, which indicates the radial pitch angle of the EVPA | is well
recovered for all models within the errorbars, for the majority of frames (79%, 51%,
80%, and 93%). From this we can conclude that the kine pipeline is able to recover
correctly the orientation of the polarization vector field, but the amount of recovered
linear polarization is at times incorrect.

5.3.2 Extra tests

In addition to the validation tests presented until now, we applied kine to other sets of
geometric and GRMHD models, to further test the range of motion and morphologies
that can be reliably reconstructed. Contrary to the previous ones, passing these tests
is not considered a requirement for the validation of the pipeline, since they are aimed
at exploring the limitations of the imaging method.

Hot spot speed and flux ratio tests

Here we present kine reconstructions of five m-ring plus hot spot models. The first
three aim to test kine’s ability to recover an orbiting hot spot under different flux
ratios between the ring and the hot spot. Specifically we tested models with ring/hot-
spot total flux ratios of 17.0, 3.5, and 1.25, in addition to the 8.0 ratio of the models
in the validation test. The last two models aim to test the maximum speed of moving
features that the pipeline is able to recover. The models consist of an m-ring plus a
hot spot orbiting with periods of 40 min and 20 min, respectively.
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Figure 5.9: Dynamic geometric models reconstructions, speed and flux tests. (Top
row) Ground truth models. (Middle row) kine reconstructions. (Bottom row) Dynamic
component of the kine reconstructions. The figure displays one frame of the full video
reconstructions available at https://github.com/mariannafoschi/phdthesis/blob/main/
chapter4-video3-geometricextra.gif. A selection of frames is shown for each model indi-
vidually in the Appendix of the thesis.

The ground truth models are shown in the top row of Figure 5.9, with the cor-
responding kine reconstructions in the second row and the dynamic component of
the reconstructions in the third row. The figure shows one frame of the full videos
which are linked in the caption. The quality of the reconstruction fit to the data is
assessed by the x2s of closure quantities, which are reported in rows 18-22 of Table 5.3
in Appendix A (section 5.5). The cross correlation, the position angle and the pattern
speed metrics are shown in Figure 5.10.

Regarding the flux ratio test, the pipeline is able to correctly recover the motion
of the hot spot for models with flux ratios of 17.0 or 3.5, as demonstrated by a total
intensity dynamic cross correlation above the threshold for 78% and 98% of the frames
and the position angle correctly recovered in 87% and 93% of the frames. For both
models, the pattern speed of the reconstruction also matches the true value within
1 sigma. However, for the flux ratio of 1.25 kine is not able to recover the correct
morphology nor dynamics of the model. We believe that this is due to the very
low flux density of the ring, which is just slightly above the detection limit set by
the expected dynamic range. Indeed kine correctly recovers the bright hot spot, as
proven by the high total intensity cross correlation (94% frames above threshold),
but seems to be “blind” to the ring, allocating the remaining flux incoherently in the
frame. This motivation would also explain why the bright spot remains fairly static
in the reconstruction, instead of orbiting. Indeed, imaging the data with only closure
quantities does not allow to constrain the absolute position of the source and, without
the ring acting as an anchoring feature, the bright spot alone is imaged in a fixed
position.
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Figure 5.10: Speed and flux tests with extra geometric models. (Left column) Total
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the model one on the left and the reconstruction one on the right. The pattern speed is
reported in deg/GMc™3.
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Figure 5.11: Extra GRMHD models reconstructions. (Top row) Ground truth GRMHD
models. (Bottom row) Corresponding kine reconstructions. The figure displays one frame of
the full video reconstructions available at https://github. com/mariannafoschi/phdthesis/
blob/main/chapter4-video4-grmhdextra.gif. A selection of frames is shown for each model
individually in the Appendix of the thesis.

Regarding the speed test, kine proves to be particularly effective in recovering
features moving at high speeds. Indeed, for both models, the total intensity cross
correlation is above the threshold in almost all frames (92% and 89%) and the or-
biting Gaussian is correctly located in the (quasi) totality of frames (94% and 94%).
The pattern speed is also estimated correctly within errorbars. Therefore we can con-
clude that kine can recover features moving with orbiting period down to at least
20 min, meaning that the maximum velocity that can be recovered is not limited by
the pipeline, but rather by the frequency of observation sampling and the lengths of
inter-scan gaps. In fact, the 2017 EHT observations of Sgr A* consist of multiple ~10
min scans spaced with gaps ranging from ~3 min to ~30 min to observe the calibrator
sources.

Extra GRMHD tests

In this section we present kine reconstructions of five extra GRMHD simulation videos.
In particular, here we want to determine the pipeline’s ability to recover GRMHD sim-
ulations that depart from what is expected from Sgr A*. Except for grmhd7 model,
the selected simulations consists of parameter combinations that are disfavored by
observational constrains of Sgr A* (EHTC 2022¢; EHTC 2024). As further detailed
in Dahale et al. (2025), the selected simulations include models: grmhd3, which is
retrograde, grmhd4, that is SANE, retrograde, nearly edge-on, with low electron tem-
perature, grmhd5, which is fully edge-on, grmhd6, which is SANE with zero spin and
grmhd7, which instead has parameters compatible with Sgr A* observations.

The ground truth models are shown in the top row of Figure 5.11, with the cor-
responding kine reconstructions in the second row. The figure shows one frame of
the full videos which are linked in the caption. The quality of the reconstructions fit
to the data is assessed by the x2s of closure quantities, which are reported in rows
23-27 of Table 5.3 in Appendix A (section 5.5). The total intensity and polarimetric
cross correlation, the position angle, /3, parameter, and the pattern speed metrics
are shown in Figure 5.12.
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Figure 5.12: Extra GRMHD models evaluation metrics. (Left column) Total intensity
cross correlation (7, in blue) and polarimetric cross correlation (P in green, x in red) between
reconstruction and ground truth. (Center column) Position angle (PA) of the ring and Zf32
parameter of the polarization vector field. (Right column) Pattern speed autocorrelation
plots, with the model one on top and the reconstruction one on the bottom. The pattern
speed is reported in deg/GMc 3. For grmhdé the polarization metrics are not reported
because the polarization signal in the model is lower than the noise level.
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From a visual inspection of the video in Figure 5.11, it is clear that reconstructing
these models is more difficult compared to almost face-on MAD models with prograde
spin and a northern position angle. We examine the reconstruction of each model
individually. Regarding grmhd3, the reconstruction recovers correctly a ring with low
asymmetry, but the total intensity cross correlation is above the threshold in slightly
less than half of the frames. The polarization signal is low, and this make its recovery
difficult (polarimetric cross correlation above the threshold for 28% and 39% of frames),
though global features like /35 are well recovered within the errorbars for the majority
of frames (58%). In this model, since the asymmetry is minimal, the position angle
is difficult to identify clearly even in the ground truth. This inflates the PA error
bars and makes the recovered angle compatible with the true one on the majority of
frames. The pattern speed is recovered with the right direction and with magnitude
within 1 sigma from the true value. We conclude that in the case of models with low
ring asymmetry, kine is able to correctly measure the direction and speed of orbital
motion, as well as the orientation of the polarization field, but it is not able to localize
the peak brightness position angle. For the grmhd4 and grmhd5 models, the pipeline
was not able to recover the basic features of the underlying ground truth. We believe
that in the case of grmh4 this was due to the significant amount of flux extending
outside the ring, paired with a high asymmetry, that resulted in portions of the ring
barely visible above the nose level. However, kine is able to attribute the majority of
the flux to the right position, even if not with the correct morphology. In the case of
grmhdb, instead, we attribute the failure to the high luminosity contrast between the
brightest spot in the upper left quadrangle and the ring and diagonal features, which
in comparison appear dim. We believe that that our pipeline struggles to detect the
ring, and, as a consequence, anchor the other elements in the video. However, for
grmhd5, kine is able to recover a pattern speed compatible with the ground truth null
value. We also observe that for grmhd4 the orientation of the linear polarization is
well recovered, as indicated by the high EVPA cross correlation (89% of frames above
the threshold) and the good estimate of Z8; (68% of frames are compatible within 1
sigma). We attribute this success to the high polarization signal present in the model,
which resulted in a high polarimetric SNR. In the case of grmhd6, the pipeline is
able to recover a variable ring structure. However, similarly to grmhd4, the high ring
asymmetry makes it hard for kine to recover the right position angle, resulting in low
passing percentage of the total intensity cross correlation and the position angle. In
this model, the linearly polarized emission is too low to recover a meaningful signal so
the polarimetric metrics are not taken into consideration.

Finally, for grmhd7, which has simulation parameters favored by Sgr A* obser-
vations, the position angle and the /fs parameter are recovered correctly for the
majority of frames (59% and 97%) as well as the total intensity structure and EVPA
orientation (cross correlations above the threshold for 83% and 58% of the frames),
while the magnitude of the linear polarization is correct only for 20% of the frames.
The estimated value of the pattern speed is at the border of 1 sigma uncertainty with
respect to the true value. Taking into consideration these metrics, we consider that
the reconstruction of the grmhd7 model is successful. Overall, considering all GRMHD
models, the direction of the pattern speed and the phase of the 5o parameter are re-
covered correctly in all cases except one, making them the most robustly recovered
parameters across the GRMHD models.
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Figure 5.13: kine reconstruction of J1924-2914. One representative frame from the video
reconstruction.

Imaging calibrator sources

As a further test of the ability of kine to reconstruct also static sources with a jet-
like structure, without introducing extra motion, we applied the pipeline described in
this work to real EHT observations of calibrator J1924-2914 on April 11 2017, which
has similar coverage of Sgr A* on that day. Testing on real observations is important
since it cannot be excluded that real data may contain unknown issues or proper-
ties not represented in synthetic data. The J1924-2914 radio source does not present
intra-day variability and has been already imaged in both total intensity and polar-
ization by Issaoun et al. (2022), so it represent a good validation dataset. The kine
video reconstruction of the source, of which we show one frame in Figure 5.13, does
not present significant variability. The morphology of the inner jet consists of three
distinct components of decreasing brightness, aligned in the southeast-northwest di-
rection. Regarding linear polarization, we observe an EVPA structure mainly oriented
along the jet direction, with a slight fan-like structure in the brightest component,
and a fractional polarization up to 0.7. This matches the reconstructions of April 11
data provided by multiple pipelines in Issaoun et al. (2022). The correct imaging of
J1924-2914 is an additional proof of kine’s ability to distinguish correctly between
static and dynamic sources, and between ring-like and non-ring-like brightness distri-
butions.

5.4 Conclusions

In this work we extended and tested the kine dynamic imaging algorithm, with a
specific pipeline developed for 2017 EHT observations of Sgr A*, on a wide range of
synthetic data with real coverage and realistic noise conditions. The synthetic data
were generated from an extensive suite of ground truth videos of static geometric
models, dynamic geometric models, and ray-traced GRMHD simulations. The overall
performance of kine is remarkably good, with a few isolated failures. We were able
to pinpoint the reasons for the few incorrect reconstructions, and since they do not
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apply to the characteristics of real Sgr A* data, we believe that the performance of the
imaging algorithm on real data should not be hindered. In this section we provide a
review of the validation tests and discuss the problematic cases. Table 5.1 displays a
summary of all the metrics used to evaluate the fidelity of the reconstructions, stating
for each model if the tests proved successful. In Table 5.2 we summarize the answers
to the questions asked in the pipeline validation process.

Regarding the reconstruction of the static models, we recovered the correct mor-
phology without additional motion for all models. The polarization field structure is
also well recovered for all models except for the absolute value of the linear polariza-
tion of the point source. We believe that this is due to the low value of |P| in the
ground truth model, combined with a total intensity reconstruction that, while pass-
ing the cross correlation test, is suboptimal compared to the other models. Overall,
we consider that, for static models, kine is able to recover the total intensity and
polarimetric ground truth model without hallucinating motion in the video.

From the tests on the geometric dynamic models, we see that kine recovers both
orbital and non-orbital motion with the correct direction and magnitude for features
moving with orbital periods from 180 min up to 20 min. In the model with incoherent
motion, kine recovers the correct position of the bright spot, but the dynamic total
intensity cross correlation is lower than the threshold for the majority of frames. We
conclude that the method can track incoherent motion, but not recover the full flux
associated with it. Nevertheless, we see that the recovered pattern speed is compatible
with zero, as expected from incoherent motion, meaning that the pipeline can discrim-
inate between incoherent and coherent motion without introducing any bias in favor
of the latter. The dynamic geometric models with varying polarization are also recov-
ered correctly by kine, as proven by the high polarimetric cross correlation and the
reconstructed /(32 parameter, meaning that the pipeline can recover a simple varying
polarization field. From the flux-ratio test, we found that kine can reconstruct the
correct model when the ratio between the flux of the ring and that of the hot spot is
greater than 1.25. This is because, below this value, the flux of the ring is too dim
to be constrained effectively and therefore it cannot act as an anchor to the moving
Gaussian.

From the pipeline’s results over the more complicated GRMHD models, we see
that, in the case of MAD models with prograde spin, high electron temperature, and
relatively face-on inclination, as is expected for Sgr A* from EHT observations (EHTC
2022e; EHTC 2024), the pipeline recovers correctly the ground truth videos, as shown
by high cross correlation values and the correct tracking of the position angle. The
pattern speed is always recovered with the correct direction and magnitude within the
errorbars. The orientation of the polarization vector field is also recovered correctly
as shown by the good recovery of the /85 parameter and the high cross correlation
for the EVPA. However the magnitude of the linear polarization is not recovered
sufficiently well. Regarding polarimetric reconstructions of GRMHDs we consider
kine to partially passing the validation tests, meaning that the pipeline can provide
reliable reconstructions for the orientation of the linear polarization but not for its
magnitude. Overall this shows that even in the case of a more complex and fast-
varying ground truth, kine can recover the important physical features of the model,
such as the total intensity structure, the orientation of the linear polarization, and
the direction and magnitude of the orbital motion. Regarding the tests on extra
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Table 5.1: Reconstruction metrics pass/fail. Summary of the tests passed and failed by
the kine reconstructions of the ground truth videos. The asterisks indicates pattern speed

estimates that are incompatible with the true value within 1 sigma, but are compatible within
2 sigmas.
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GRMHD simulations, kine sometimes struggles to recover the correct morphology
and dynamics of the ground truth model. In particular, the imaging pipeline fails
in the cases of edge-on or almost edge-on models, which are characterized by high
asymmetry and the presence of a localized spot significantly brighter than the rest
of the emission. However, a scenario in which Sgr A* is edge-on is highly disfavored
by EHT and non-EHT observational constrains (EHTC 2022e; EHTC 2024), so we
believe that the worse performance of the pipeline on these models will not impact
the robustness of the reconstruction of real Sgr A* data. Nevertheless, the direction of
the pattern speed and the phase of the 8y parameter were recovered correctly for all
GRMHD models except one, meaning that the estimate of these quantities is robust
under any GRMHD scenario. Finally we tested the pipeline on real observations of the
radio source J1924-2914 by the EHT on April 11" 2017, recovering a static polarized
image and amplitude gains in agreement with previous results by the EHT (Issaoun
et al. 2022).

The quality of the video reconstructions and the extensiveness of the validation
tests presented in this work represent a significant improvement in comparison to the
first dynamic imaging attempts presented in EHTC (2022c¢). Most of the validation
in EHTC (2022¢) revolved around the impact of data pre-processing, specially that
concerning subtraction of interstellar scattering, and prior assumptions required by
the StarWarps pipeline, the only imaging algorithm employed. With respect to data
descattering, all results presented here are on-sky data, so all the tests associated to
descattering are unnecessary. At the same time, we have proven that with an unified
pipeline, the hyperparameters associated to the kine pipeline are able to reproduce
with high fidelity significantly different synthetic data, with fast, slow, and no vari-
ability at all. In EHTC (2022c¢), we considered GRMHD simulations to be successfully
recovered if the overall position angle of the video reconstruction matched within some
uncertainty that of the ground-truth model. This resulted in two out of three test cases
passed. Here, not only we recover in most cases the position angle of a more extensive
suit of GRMHD models, but also reconstruct high-fidelity videos with subtle features
such as spiral arms, highly-consistent linear polarization structures, and, in most cases,
the correct magnitude and orientation of the ground-truth pattern speed.

The reason why kine performs better than other imaging methods, lies in the flex-
ibility of the pipeline’s priors and the absence of bias towards specific morphologies
or amounts of variability. Thanks to the neural field representation at the core of the
imaging algorithm (Foschi et al. 2025b), kine enforces space-time regularization in
the output video not through explicit, arbitrary regularizer terms, but thanks to the
implicit preference of the network for fitting smoother functions (a property known
as spectral bias, Rahaman et al. 2019). This characteristic makes the pipeline highly
expressible and at the same time less biased. Spectral bias is especially important be-
cause it allows kine to not require a hyperparameter encoding the amount of temporal
regularization, since, if the training of the reconstruction is stopped before overfitting,
spectral bias, combined with positional encoding, will ensures that the reconstruction
has the correct amount of space and time regularization. Additionally, we designed
the pipeline for EHT observations of Sgr A* to be as agnostic as possible. This was
achieved by building a unified pipeline, with the same set of hyperparameters, to be
applied to all synthetic data, by performing the first rounds of imaging with closure
quantities only, so to be independent from calibration errors, and by using a simple
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disk image as initialization, a shape from which the pipeline was easily able to deviate
during optimization.

Because of all these considerations, we judge the pipeline to have passed the valida-
tion tests, meaning that it can be considered reliable for the reconstruction of the first
horizon-scale video of a super-massive black hole, using EHT observations of Sgr A*
on April 11 2017. The video reconstructed by kine from real Sgr A* data is presented
in EHTC (2025), together with a brief analysis of the features and motion displayed
in the video.

5.5 Appendix A. Fit quality

We discuss here the quality of fit of the kine reconstructions to the synthetic data.
For every model, we computed the time-averaged x? of individual data products D.

. 2
N Npj (D.. — D)
1 1 ( ij ij
2
= — , 5.12

where the index j runs over all the observed times, from 1 to the total number of
observed times NV, the index ¢ runs over all data corresponding to the observed time
tj, from 1 to the total number of data Np ;, and kp is a normalization factor that
takes into account the data product’s degrees of freedom. Since the imaging procedure
involves amplitude gain fitting and phase self-calibration steps, we chose to consider
only the x? of closure quantities, specifically log closure amplitudes, closure phases,
and 1, which are not affected by gain errors and calibration. Table 5.3 presents x2s
for all models. The table shows that all reconstructions provide a good fit to the data,
since almost all x2s are of the order of 1. The only exceptions are the polarization x2s
of the mring+hsCW1.20 model, which we fail to recover, and GRMHD models 2, 4,
and 6, the latter of which has no significant polarization signal. Nevertheless, the x>
values not of order 1 are still lower than 4.

5.6 Appendix B. Gain fitting

We demonstrate our ability to recover visibility amplitude gains disentangled from
intrinsic variability in Figure 5.14. In the left panel, we show the ground-truth gains
applied to the synthetic data presented in the next sections and those recovered by
kine. Specifically, these corresponds to the mring+hsCW model (see section 5.3.1). In
the right panel, we show the amplitude gains derived from the images that different
pipelines reconstructed for the jet J1924-2914, presented in Issaoun et al. (2022), and
the gains recovered by kine during the simultaneous image and gain fitting process.
The final image from kine can be seen in Figure 5.13. In both cases, for the majority
of scans, the recovered amplitude gains are in agreement with the ground-truth gains
in the case of Sgr A* synthetic data, and with other established pipelines in the case of
J1924-2914. We observe that on a few scans the gain estimates provided by kine don’t
match the ground truth ones. On average, gains recovered by kine differ a factor of
(1+£1)% for ALMA, APEX, LMT, and SMA; a factor of (2+1)% for SMT and SPT;
and a factor of (3 +2)% for JCMT. However, even when the fitted gains don’t match
the true ones on all the scans, fitting gains simultaneously in the imaging process
makes the reconstructed video closer to the ground truth. Therefore we incorporate
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model Xlgogcamp Xgphase X?nbreve
1 crescent 1.16 1.40 1.07
2 disk 0.70 1.32 1.01
3 double 0.76 1.41 1.06
4 edisk 0.66 1.40 1.98
5 point 1.12 1.43 1.60
6 ring 1.22 1.31 1.10
7 mring+hsCW 1.09 1.10 1.31
8 mring+hsCCW 0.81 1.11 1.27
9 mring+hs-cross 0.95 1.02 1.38
10 mring+hs-incoh 1.27 1.43 1.36
11 mring+hs-not-center 1.06 1.00 1.32
12 mring+hs-pol 1.22 1.18 1.19
13 mring-varbeta2 1.18 1.33 1.17
14 grmhd1l 0.65 0.92 1.69
15 grmhd2 0.78 0.85 3.61
16 grmhd2+hs2 0.64 0.72 3.23
17  grmhd8 0.72 0.90 1.41
18 mring+hsCW20 1.08 0.96 2.15
19 mring+hsCW40 1.12 0.98 1.56
20 mring+hsCWO0.15 1.04 1.08 1.12
21 mring+hsCW0.60 0.80 1.21 1.47
22 mring+hsCW1.20 0.65 0.83 1.57
23 grmhd3 0.82 0.96 1.54
24 grmhd4 0.61 1.11 2.34
25 grmhdb 0.78 0.81 2.49
26 grmhd6 0.64 0.84 1.07
27  grmhd7 1.06 0.88 1.57

Table 5.3: Goodness of fit of kine reconstructions. y? values between reconstructions
and synthetic data, for all models and all closure data products.
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mring+hs CW synthetic data | 2017 April 11 @ truth @ kine J1924-2914 | 2017 April 11 © Issaounetal. (2022) @ kine
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Figure 5.14: Visibility amplitude gains recovered by kine. Left panel shows the ground-
truth gains applied for Sgr A* synthetic data (gray points) and those simultaneously fitted
by kine while performing a video reconstruction (blue points). Right panel shows the gains

recovered by the different imaging algorithms employed in Issaoun et al. (2022) after self-
calibration and those simultaneously fitted by kine.

gain fitting in the pipeline, but rely on self-calibration to estimate the gains applied
in the imaging of the polarimetric visibilities.
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Conclusions

In this thesis, we developed, validated, and applied novel imaging and analysis
methods to study the dynamical processes of black hole accretion and the launching
of relativistic jets from supermassive black holes. First, we focused on imaging multiple
observations of the parsec-scale jet in 3C 84, using snapshot reconstructions generated
with eht-imaging. Thanks to the super-resolution capabilities of this method, we
were able to track the time variation of several kinematic properties of the jet. How-
ever, discontinuities between frames limited the potential for more detailed temporal
analysis. Second, we introduced a new imaging method for VLBI observations based
on a neural field representation, capable of reconstructing a continuous video of a
source from temporally separated observations. We applied this method to multiple
epochs of the relativistic jet in 3C 345. The analysis of the resulting full-polarimetric
video provided information about the jet’s magnetic field structure, interactions with
ISM, the core’s irregular precession, and the plasma flow velocity. The developed
method was then successfully validated on the extremely sparse coverage of the 2017
EHT array, demonstrating its ability to reconstruct a robust, horizon-scale video of
Sgr A*. Here we will detail the results and conclusions drawn from each work.

Evolution of a relativistic jet. We reconstructed images of 3C 84 from 121 epochs
of 43 GHz VLBA observations spanning approximately 10 years, using the RML imag-
ing method eht-imaging. The images reveal the evolution of the limb-brightened jet
that expands southward, ultimately tripling its initial length. We measured the ex-
pansion speed of the jet front over time and identified three distinct velocity regimes.
During the first two years of observations, the jet expanded at a constant apparent
speed of 0.29+0.01 ¢, while undergoing a morphological transition from an FR I to an
FR II structure. Subsequently, the newly formed jet lobe began to inflate, causing a
deceleration in the expansion, which proceeded at an apparent speed of 0.228 £0.004 c
over the next four years. This phase ended with a second morphological transition, this
time from FR II back to FR 1. Afterward, the jets resumed its expansion at a higher
apparent speed of 0.61 + 0.01 c. Throughout this period, the jet core exhibited rapid,
irregular changes in orientation, which in turn affected the jet’s direction, resulting
in a winding, non-linear structure. Within 0.03 pc from the core, the jet’s direction
oscillated irregularly, spanning a total projected angle of 80°, including a rapid 60°
shift over just two years. Altogether, our results indicate that the jet is propagating
through an irregular ISM, characterized by clumps of material with varying densities
that affect the jet’s speed direction and morphology. Additionally, certain portions
of the jet appear darkened which may be explained by the presence of absorbing gas
in the foreground. The double morphological transition observed in the jet suggests
that the presence of radio lobes at the tip of the jet may be a temporary phase in
jet evolution, caused by a higher density of the ambient medium. The historic evolu-
tion of 3C 84 supports this interpretation, as remnants of past radio lobes have been
observed at multiple scales from the core, in both the jet and the counterjet. The

119



irregular precession of the jet is more difficult to interpret. Potential causes include
instabilities in the accretion disk or a misalignment between the disk’s axis and the
black hole’s spin. Such a misalignment could induce warping in the disk, leading to
a stochastic variation in the jet’s orientation. The quantitative kinematic results and
the qualitative details of the jet evolution presented in this work were made possible
by combining a super-resolving imaging technique with the extensive amount of re-
peated observations provided by blazar monitoring programs. These results represent
a change in how jet features can be tracked, shifting from simple component model
fitting to specific ad-hoc analysis tailored to the jet morphology.

The kine imaging method. We approached the study of variable radio source
by developing a dynamic imaging method capable of recovering a video of the source
from VLBI observations taken at different times. The method, named kine, relies on a
coordinate-based neural network to provide a parametric representation of the bright-
ness distribution, which is iteratively optimized to match the observed data. Temporal
and spatial regularization of the video is implicitly enforced by the network’s spectral
bias, which naturally favors smooth outputs by fitting low-frequency components be-
fore high-frequency ones. kine can recover full-polarization videos from any VLBI
data product, without requiring explicit morphological priors, with no dependence on
the initialization video, and with minimal tuning of the hyperparameters of the algo-
rithm. We used kine to image 116 epochs of 15 GHz VLBA observations of 3C 345
spanning a period of 27 years. This resulted in a full-polarimetric time-continuous
video with a resolution 5-6 times higher and a dynamic range two orders of magnitude
greater than standard imaging with CLEAN. Compared to “snapshot” imaging with a
super-resolution method (like that applied in the imaging of 3C 84), the kine video of
3C 345 achieves a factor of ~2 better resolution and more than one order of magnitude
improvement in dynamic range, with the additional advantage of providing a model of
the source that can be sampled continuously in time. The reconstructed video shows
a jet characterized by complex dynamics, with turbulent motion in the inner jet and
occasional ejection of bright features from the core. We observe that also in 3C 345
the core changes orientation irregularly, spanning a projected angle of 60°. This result
challenges previous interpretations suggesting a regular precession of the jet induced
by a binary black hole system. The linear polarization structure shows a transverse-
parallel-transverse pattern with respect to the jet axis, indicating the presence of a
large-scale helical magnetic field dominated by its toroidal component. We observe an
increase in fractional polarization at the jet edges, which we interpret as a result of the
shearing of the jet boundary layer from friction with the ISM. To study the jet dynam-
ics, we applied an optical flow technique to measure the local instantaneous velocity
field of the plasma. The average flow speed ranges from 10-12 ¢ in the inner jet to 5-8 ¢
in the outer jet, implying a gradual deceleration. By integrating the velocity field, we
traced the trajectories of bright components and measured their speeds, finding them
to be of the same order of the surrounding average flow velocities. This indicates
that the observed bright features are not traveling shocks, as previously proposed, but
rather regions of increased emissivity that become Doppler boosted when emitted in
the southern direction. If these features were strong shocks, we would expect a discon-
tinuity between the the shock’s pattern speed and that of the bulk velocity. We would
also expect the shocked region to have a higher fractional polarization caused by the
ordering of the magnetic field induced by the shock compression, but neither this is
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observed in our video. The measurement of both the component speed and the bulk
flow velocity was made possible thanks to the high resolution and dynamic range of
the reconstructed video, combined with its time continuity, which were enabled by our
novel imaging method. The ability to recover pixel-by-pixel velocity maps represents
a major advancement in kinematic and dynamic studies of relativistic jets, especially
if applied to decades of observations from monitoring programs.

Dynamic imaging of Sgr A*. We further extended the architecture of the kine
imaging method to address the challenges posed by the extremely sparse instantaneous
coverage of the EHT, paired with the high intra-observation variability of Sgr A*. The
new architecture assumes that the video can be decomposed into a static and a dy-
namic component, which are modeled by separate networks. We tested the pipeline
on synthetic data derived from a variety of models, including static geometric mod-
els, dynamic geometric models, and ray-traced GRMHD simulations. The synthetic
datasets were simulated with realistic thermal noise, complex gain corruption, and
interstellar scattering effects, following the EHT (u, v)-coverage on April 11, 2017. To
evaluate the reconstruction quality, we employed multiple fidelity metrics, including;:
data products x2s values, image cross correlation, visibility variance, positional track-
ing of the moving components and the brightness peak, the integrated EVPA pitch
angle (£f2), and the pattern speed of orbiting features. In tests with static mod-
els, kine successfully reconstructed the source morphology in both total intensity and
polarization without introducing spurious variability. The reconstructions of dynamic
geometric models demonstrate that the pipeline can accurately recover orbital and non
orbital motion with the correct direction and speed, track changes in the linear polar-
ization, and distinguish between coherent and incoherent motion without systematic
bias. While the maximum recoverable speed is constrained by the temporal sampling
of the observations rather than by kine itself, the method’s performance is limited
by the flux ratio between the static and dynamic components. If the static compo-
nent is too faint, it cannot effectively anchor the dynamic component. In tests using
GRMHD simulations favored by observational constraints on Sgr A*, such as face-on,
MAD, and prograde models, kine reliably reconstructs the total intensity morphology
and the orientation of the linear polarization structure. It also correctly identifies
the brightness position angle and recovers the integrated polarization field pitch an-
gle. Furthermore, the reconstructed pattern speed of orbiting features are consistent
in both direction and magnitude with the ground truth. However the magnitude of
the linear polarization is often not recovered correctly. For GRMHD models that are
disfavored by Sgr A* observations, particularly edge-on models with significant asym-
metry and faint rings, kine sometimes fails to recover the ground truth with such a
sparse (u,v)-coverage. Nonetheless, even in these cases, the position angle and polar-
ization orientation are generally reconstructed accurately. Overall, kine demonstrates
excellent performance, which is especially remarkable given the sparse instantaneous
coverage of the EHT array in 2017. We found only a few isolated failure cases, which
we were able to understand. Since the conditions that led to incorrect reconstruc-
tions are not present in real observations of Sgr A* we believe that the performance of
the method on real data should not be hindered. Therefore this study demonstrates
that the kine imaging method, with the specialized pipeline for EHT data, is able to
recover a robust video reconstruction of Sgr A* from April 11, 2017 observations.
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Impact and future developments. The major contribution of this work is the
development and validation of kine, a new dynamic imaging method for VLBI obser-
vations. The algorithm can recover videos either from multiple repeated observations
of a slowly varying source or from a single observation of a source varying on time
scales shorter than the observation time. In the former case, kine offers a significant
improvement in resolution and dynamic range over traditional methods, thanks to its
ability to share information across multiple time steps. This represents an extremely
promising tool that will mark a shift in dynamical studies of jets, especially now that
the blazar monitoring programs initiated in the 1990s and 2000s have accumulated
decades of nearly monthly observations for dozens of sources. Moreover, the conti-
nuity of the reconstructed video enables the recovery of the instantaneous projected
velocity field of the emitting plasma, from which one can measure the velocity of dif-
ferent elements in the jet and study the details of the turbulent plasma flow. In the
second case, kine has demonstrated its ability to reconstruct minute-by-minute videos
from the extremely sparse observations of the Sgr A* black hole with the EHT. In the
near future, this method will be used to image the first robust video of Sgr A*, from
real EHT observations conducted on April 11, 2017. From the video, we will be able to
measure the direction and speed of the material orbiting the black hole, as well as con-
strain its spin and the parameters of the accretion models. In the coming years kine
can also be used in the imaging of multi-day observations of M 87*, which have been
proposed for the 2026 EHT observing campaign, as well as to image other single-day
observations of Sgr A* after 2017. Future developments to the algorithm will include
extending kine to multi-frequency VLBI observations, enabling the simultaneous re-
covery of the spectral index map along with the video. Additionally, the neural field
architecture of the method can be reformulated within a Bayesian approach, allowing
for estimation of the posterior distribution of the reconstructed videos. These two im-
provements will make kine, which is already a versatile and powerful imaging method,
into a truly comprehensive pipeline for a wide range of VLBI imaging tasks.
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Conclusiones

En esta tesis hemos desarrollado, validado y aplicado nuevos métodos de andlisis e
imagen para estudiar los procesos dindmicos de acrecién en agujeros negros y el lanza-
miento de chorros relativistas desde agujeros negros supermasivos. En primer lugar,
nos centramos en la reconstruccién de imagenes individuales a partir de miltiples ob-
servaciones del chorro a escalas del parsec en 3C 84, empleando eht-imaging. Gracias
a las capacidades de superresolucion de este método, pudimos seguir la variacién tem-
poral de varias propiedades cineméticas del chorro. Sin embargo, las discontinuidades
entre fotogramas limitaron las posibilidades de realizar analisis temporales mas de-
tallados. En segundo lugar, introdujimos un nuevo algoritmo de reconstrucciéon de
imégenes para observaciones VLBI basado en una representaciéon de campo neuronal,
capaz de reconstruir un video continuo de una fuente a partir de observaciones sepa-
radas temporalmente. Aplicamos este método a multiples épocas del chorro relativista
en 3C345. El anélisis del video resultante en polarizaciéon completa proporciond in-
formacién sobre la estructura del campo magnético del chorro, las interacciones con
el ISM, la precesion irregular del nucleo y la velocidad del flujo de plasma. A contin-
uacién, el método desarrollado se valid6é con éxito en el cubrimiento extremadamente
escaso del la red EHT en 2017, demostrando su capacidad para reconstruir un video
robusto a escala del horizonte de sucesos de Sgr A*. Aqui detallaremos los resultados
y las conclusiones extraidas de cada trabajo.

Evolucién de un chorro relativista. Hemos reconstruido imagenes de 3C84 a
partir de 121 épocas de observaciones con el VLBA a 43 GHz que abarcan aproxi-
madamente 10 afos, utilizando un método RML. Las imagenes revelan la evoluciéon
de un chorro cuyos bordes brillan por encima del eje y que se expande hacia el sur,
triplicando su longitud inicial. Hemos medido la velocidad de expansién del frente
del chorro a lo largo del tiempo e identificamos tres regimenes de velocidad distin-
tos. Durante los dos primeros anos de observaciones, el chorro se expandié a una
velocidad aparente constante de 0.29 £ 0.01 ¢, mientras experimentaba una transicién
morfolégica de una estructura FR I a una FR II. Posteriormente, el 16bulo del chorro
recién formado comenzd a inflarse, provocando una desaceleraciéon de la expansion,
que prosiguié a una velocidad aparente de 0.228 4+ 0.004 ¢ durante los cuatro anos
siguientes. Esta fase termindé con una segunda transicién morfolégica, esta vez de
FR II de nuevo a FR 1. Después, el chorro reanudé su expansion a una mayor veloci-
dad aparente de 0.61 4+ 0.01 c. A lo largo de este periodo, el niicleo del chorro mostréd
cambios rapidos e irregulares de orientacién, que a su vez afectaron a la direccion
del chorro, dando lugar a una estructura sinuosa y no lineal. A 0.03 pc del ntucleo,
la direccién del chorro oscilé irregularmente, abarcando un angulo total proyectado
sobre el plano del cielo de 80°, incluyendo un réapido cambio de 60° en sélo dos afios.
En conjunto, nuestros resultados indican que el chorro se propaga a través de un ISM
irregular, caracterizado por aglomeraciones de material con densidades variables que
afectan a la direccién de la velocidad del chorro y a su morfologia. Ademads, algunas
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partes del chorro aparecen oscurecidas, lo que podria explicarse por la presencia de gas
absorbente en primer plano. La doble transicién morfolégica observada en el chorro
sugiere que la presencia de 16bulos de radio en el extremo del chorro puede ser una fase
temporal en la evolucién del chorro, causada por una mayor densidad del medio. La
evolucién histérica de 3C 84 apoya esta interpretacion, ya que se han observado restos
de 16bulos de radio antiguos a multiples escalas desde el niicleo, tanto en el chorro
principal como en el eyectado en direccién opuesta. La precesién irregular del chorro
es més dificil de interpretar. Entre las posibles causas se incluyen inestabilidades en
el disco de acrecién o una desalineacién entre el eje del disco y el eje de rotacion del
agujero negro. Tal desalineacién podria inducir deformaciones en el disco, dando lugar
a una variacién estocéstica en la orientacion del chorro. Los resultados cinematicos
cuantitativos y los detalles cualitativos de la evolucién del chorro presentados en este
trabajo han sido posibles gracias a la combinacién de una técnica de imagen de su-
perresolucién con la gran cantidad de observaciones repetidas que proporcionan los
programas de monitorizado de blazares. Estos resultados representan un cambio en
la forma de rastrear las caracteristicas del chorro, pasando de un simple ajuste de
componentes Gaussianas a un analisis especifico ad hoc, adaptado a la morfologia del
chorro.

El algoritmo de reconstruccién de video kine. Abordamos el estudio de las ra-
dio fuentes variables desarrollando un método de imagen dindmica capaz de recuperar
un video de la fuente a partir de observaciones VLBI obtenidas en diferentes momen-
tos. El método, denominado kine, se basa en una red neuronal cuya entrada es un
sistema de coordenadas que permite proporcionar una representacion paramétrica de
la distribucién de brillo y que se optimiza iterativamente para ajustarse a los datos
observados. La regularizaciéon temporal y espacial del video estda implicitamente re-
forzada por el sesgo espectral de la red, que favorece de forma natural los resultados
suaves ajustando las componentes de baja frecuencia antes que los de alta frecuencia.
kine puede recuperar videos en polarizacién completa a partir de cualquier producto
de datos VLBI, sin necesidad de informacién a priori sobre la morfologia de la fuente,
y con un ajuste minimo de los hiperpardmetros del algoritmo. Utilizamos kine para
obtener imagenes de 116 épocas de observaciones con el VLBA a 15 GHz de 3C 345
que abarcan un periodo de 27 anos. Esto dié como resultado un video continuo en
el tiempo en polarimetria completa con una resoluciéon 5-6 veces superior y un rango
dindmico dos érdenes de magnitud mayor que las imégenes estdndar con CLEAN.
En comparacién con las imagenes “instantaneas” obtenidas con un método de super-
resolucién (como el aplicado en las imagenes de 3C84), el video de kine de 3C 345
consigue una resolucion dos veces mejor y mas de un orden de magnitud de mejora en
el rango dindmico, con la ventaja adicional de proporcionar un modelo de la fuente que
puede ser muestreado continuamente en el tiempo. El video reconstruido muestra un
chorro caracterizado por una dindmica compleja, con movimientos turbulentos en el
interior del chorro y expulsiéon ocasional de elementos brillantes del nticleo. También
observamos que el nicleo de 3C 345 cambia de orientaciéon de forma irregular, abar-
cando un 4ngulo proyectado sobre el plano del cielo de 60°. Este resultado desafia las
interpretaciones previas que sugerian una precesion regular del chorro inducida por
un sistema binario de agujeros negros. La estructura de polarizacién lineal muestra
un patréon transversal-paralelo-transversal con respecto al eje del chorro, lo que indica
la presencia de un campo magnético helicoidal a gran escala dominado por su com-
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ponente toroidal. Observamos un aumento del grado de polarizacién en los bordes
del chorro, que interpretamos como resultado del cizallamiento de la capa exterior del
chorro por friccién con el ISM. Para estudiar la dindmica del chorro, aplicamos una
técnica de flujo optico para medir el campo de velocidad instantanea local del plasma.
La velocidad media del flujo oscila entre 10-12 ¢ en la parte interna del chorro y 5-8 ¢
en la parte externa del chorro, lo que implica una desaceleracién gradual. Integrando
el campo de velocidades, trazamos las trayectorias de las componentes brillantes y
medimos sus velocidades, encontrando que son del mismo orden que las velocidades
medias del flujo circundante. Esto indica que las componentes brillantes observadas
no son ondas de choque, como se habia propuesto anteriormente, sino mas bien re-
giones de mayor emisividad que se potencian por efecto Doppler cuando se emiten
en direccién sur. Si estas componentes fueran choques fuertes, esperariamos que hu-
biese una discontinuidad entre la velocidad “pattern” del choque y la velocidad del
plasma. También esperariamos que la region de choque tuviera una un mayor grado
de polarizaciéon causado por el ordenamiento del campo magnético inducido por la
compresién del choque, pero esto tampoco se observa en nuestro video. La medicién
tanto de la velocidad de las componentes como de la velocidad del flujo fue posible
gracias a la alta resolucién y al rango dindmico del video reconstruido, combinados
con su continuidad temporal, que fueron posibles gracias a nuestro novedoso algoritmo
de reconstruccién de imagenes. La capacidad de recuperar mapas de velocidad pixel
a pixel representa un gran avance en los estudios cineméaticos y dindmicos de chor-
ros relativistas, especialmente aplicado a décadas de observaciones de programas de
monitorizado.

Imagenes dinamicas de Sgr A*. Hemos ampliado ain méas la arquitectura del
algoritmo kine para hacer frente a los desafios planteados por el escaso cubrimiento in-
stantdneo del EHT, unido a la gran variabilidad intraobservacién de Sgr A*. La nueva
arquitectura asume que el video puede descomponerse en una componente estatica y
dindmica, que se modelan mediante redes separadas. Hemos probado el algoritmo en
datos sintéticos derivados de una variedad de modelos, incluyendo modelos geométricos
estaticos, modelos geométricos dindmicos y simulaciones GRMHD. Los conjuntos de
datos sintéticos se simularon con ruido térmico realista, ganancias en amplitud y en
fase y efectos de scattering interestelar, siguiendo el cubrimiento (u,v) del EHT del 11
de abril de 2017. Para evaluar la calidad de la reconstrucciéon, empleamos multiples
métricas de fidelidad, incluyendo: valores x2s de los productos de datos, correlacién
cruzada de imégenes, varianza de las visibilidades, seguimiento posicional de las com-
ponentes méviles y el pico de brillo, la distribucién integrada de los EVPAs (£33) y
la velocidad de ciertas caracteristicas orbitales. En las pruebas con modelos estaticos,
kine reconstruyé con éxito la morfologia de la fuente tanto en intensidad total como
en polarizacién sin introducir variabilidad artificial. Las reconstrucciones de modelos
geométricos dindmicos demuestran que el algoritmo puede recuperar con precisiéon el
movimiento orbital y no orbital con la direccién y velocidad correctas, rastrear cam-
bios en la polarizacién lineal y distinguir entre movimiento coherente e incoherente
sin un sesgo sistematico. Aunque la velocidad maxima recuperable estd limitada por
el muestreo temporal de las observaciones y no por kine, el rendimiento del método
estd limitado por la relacién de flujo entre las componentes estatica y dindmica. Si la
componente estatica es demasiado débil, no puede anclar eficazmente la componente
dindmica. En las pruebas realizadas con simulaciones GRMHD favorecidas por las ob-
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servaciones de Sgr A*, como los modelos face-on, MAD y prograde, kine reconstruye
con fiabilidad la morfologia en intensidad total y la orientacién de la estructura de
polarizacién lineal. También identifica correctamente el angulo de posicién del brillo
y recupera el dngulo de inclinacién del campo de polarizacion integrado. Ademas,
las velocidades reconstruidas de las caracteristicas orbitales son consistentes tanto en
direccién como en magnitud con el modelo original. Sin embargo, la magnitud de la
polarizacién lineal a menudo no se recupera correctamente. Para los modelos GRMHD
que son desfavorecidos por las observaciones de Sgr A*, particularmente los modelos
con vista de canto que presentan una asimetria significativa y anillos tenues, kine a
veces no logra recuperar la morfologia original, con un cubrimiento (u,v) tan escaso.
No obstante, incluso en estos casos, el angulo de posicién y la orientaciéon de la po-
larizacién generalmente se reconstruyen con precisién. En general, kine demuestra
un rendimiento excelente, lo que es especialmente destacable dado el escaso cubrim-
iento instantianeo de la red de antennas del EHT en 2017. Solo encontramos unos
pocos casos de fallo aislados, que pudimos comprender. Dado que las condiciones que
llevaron a reconstrucciones incorrectas no estan presentes en las observaciones reales
de Sgr A*, creemos que el rendimiento del método con datos reales no deberia verse
afectado. Por lo tanto, este estudio demuestra que el algoritmo kine, con el proceso
de imagen ideado para datos del EHT, es capaz de reconstruir de forma robusta un
video de Sgr A* a partir de las observaciones del 11 de abril de 2017.

Impacto y desarrollo futuros. La principal contribucién de este trabajo es el
desarrollo y la validaciéon de kine, un nuevo método de imagen dindmica para ob-
servaciones VLBI. El algoritmo puede recuperar videos tanto a partir de multiples
observaciones de una fuente que varia lentamente, como a partir de una tnica obser-
vacién de una fuente que varia en escalas de tiempo mas réapidas que el tiempo de
observacion. En el primer caso, kine ofrece una mejora significativa en la resolucion y
el rango dindmico en comparacién con los métodos tradicionales, gracias a su capaci-
dad para compartir informacién entre miltiples instantes de tiempo. Esto representa
una herramienta extremadamente prometedora que marcard un cambio en los estudios
dindamicos de jets, especialmente ahora que los programas de monitorizado de blazares
iniciados en los anos 1990 y 2000 han acumulado décadas de observaciones casi mensu-
ales para docenas de fuentes. Ademas, la continuidad del video reconstruido permite
recuperar el campo de velocidad instantaneo del plasma emisor proyectado sobre el
plano del cielo, a partir del cual se puede medir la velocidad de diferentes elementos
del chorro y estudiar los detalles del flujo de plasma turbulento. En el segundo caso,
kine ha demostrado su capacidad para reconstruir videos minuto a minuto a partir de
las observaciones extremadamente escasas del agujero negro Sgr A* con el EHT. En
un futuro préximo, este método se utilizard para obtener el primer video de Sgr A* a
partir de observaciones reales del EHT realizadas el 11 de abril de 2017. A partir del
video, podremos medir la direccién y la velocidad del material que orbita el agujero
negro, asi como restringir su spin y los parametros de los modelos de acrecimiento. En
los préximos anos, kine también podra utilizarse para la reconstruccién de un video
a partir de observaciones de varios dias de M 87*, que han sido propuestas para la
campana de observacion del EHT en 2026, asi como para obtener imagenes de otras
observaciones de un solo dfa de Sgr A* posteriores a 2017. El desarrollo futuro del
algoritmo incluird la extension de kine a observaciones VLBI multifrecuencia, lo que
permitira la recuperaciéon simultanea del mapa del indice espectral junto con el video.
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Ademas, la arquitectura de campos neuronales del método podré reformularse dentro
de un marco bayesiano, permitiendo asi la estimacién de la distribucién posterior de
los videos reconstruidos. Estas dos mejoras convertiran a kine, que ya es un método
de imagen potente y versatil, en una herramienta verdaderamente integral para una
amplia gama de tareas de imagen VLBI.
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AGN: Active Galactic Nuclei

ALMA: Atacama Large Millimeter Array
BBH: Binary Black Hole

BP: Blandford-Payne

BZ: Blandford-Znajek

CNN: Convolutional Neural Network
DL: Deep Learning

EHT: Event Horizon Telescope

EHTC: Event Horizon Telescope Collaboration
EVPA: Electric Vector Position Angle
FNN: Feed-forward Neural Network
FOV: Field Of View

FR: Fanaroff-Riley

FWHM: Full Width at Half Maximum
GP: Gaussian Process

GR: General Relativity

GELU: Gaussian Error Linear Unit

Acronyms

GRMHD: General Relativistic Magneto-Hydro-Dynamic

HS: Horn Schunck

ICM: IntraCluster Medium

ISM: InterStellar Medium

LR: Learning Rate

MAD: Magnetically Arrested Disk
ML: Machine Learning

MLP: Multi-Layer Perceptron
MLP: Magnetic Resonance Imaging
NeRF: Neural Radiance Field
NN: Neural Network

OF': Optical Flow
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PA: Position Angle

PS: Power Spectrum

RML: Regularized Maximum Entropy
SKA: Square Kilometer Array

SNR: Signal-to-Noise Ratio

SMBH: SuperMassive Black Hole

SR: Special Relativity

VLA: Very Large Array

VLBA: Very Long Baseline Array
VLBI: Very Long Baseline Interferometry
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Appendix

Selected frames from the kine video reconstructions presented in Chapter 5. The
top row shows the ground truth model, the bottom one the reconstruction.
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Figure 5.15: mring+hsCW reconstruction with kine.
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Figure 5.16: mring+hsCCW reconstruction with kine.
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Figure 5.17: mring+hs-cross reconstruction with kine.
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Figure 5.18: mring+hs-incoh reconstruction with kine.
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Figure 5.19: mring+hs-not-center reconstruction with kine.
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Figure 5.20: mring+hs-pol reconstruction with kine.
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Figure 5.21: mring-varbeta2 reconstruction with kine.
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Figure 5.22: mring+hsCW20 reconstruction with kine.
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Figure 5.23: mring+hsCW40 reconstruction with kine.
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Figure 5.24: mring+hsCW0.15 reconstruction with kine.
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Figure 5.25: mring+hsCW0.60 reconstruction with kine.
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Figure 5.26: mring+hsCW1.20 reconstruction with kine.
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Figure 5.27: grmhd1 reconstruction with kine.
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Figure 5.28: grmhd2 reconstruction with kine.
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Figure 5.29: grmhd2+hs2 reconstruction with kine.

11.46 UT 12.29 UT 12.86 UT 13.51 UT

Figure 5.30: grmhd3 reconstruction with kine.
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Figure 5.31: grmhd4 reconstruction with kine.
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Figure 5.32: grmhd5 reconstruction with kine.
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Figure 5.33: grmhd6 reconstruction with kine.
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Figure 5.34: grmhd7 reconstruction with kine.
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Figure 5.35: grmhd8
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