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Abstract

The cosmic microwave background radiation (CMB) is currently one of the main
sources of information about the early evolution of our universe, since the patterns
in the CMB anisotropies carry the imprint of the primordial fluctuations, dating back
to the epoch of inflation. One of the last predictions of the inflationary framework
that still remains to be observed is the existence of primordial gravitational waves,
which should have left a trace in the CMB polarization B-modes anisotropies. There-
fore, detecting a B-modes signal, or putting a strict upper limit to its amplitude, is
currently one of the main goals of future CMB experiments. The detection of pri-
mordial B-modes is made difficult because of contamination by gravitational lensing
and foreground emitting sources. The major foreground contaminant is the galactic
emission, in particular the thermal dust emission, which is predominant in the fre-
quency range of CMB observations. Modeling correctly this foreground is crucial to
calibrate component separation and delensing algorithms and obtain a clean CMB
signal.

Here I present an extension to the Python package ForSE ("Foreground Scale ex-
tender") for modeling polarized emission from the galactic thermal dust foreground,
in the context of CMB observations. The peculiarity of ForSE, compared to other
models is that, by exploiting an algorithm based on a generative adversarial neural
network, it is able to produce a full sky map of the polarized dust emission with non-
Gaussian small scale features, up to a resolution of 12 arcminutes, which is higher
than the resolution of best available experimental maps made from Planck data. My
thesis aims at improving the ForSE package on two fronts: first by adding stochastic-
ity in the foreground model, so to introduce variability in the foreground maps, and
secondly by iterating the model to generate maps with a resolution of 3 arcminutes.
As a result, I was able to obtain a procedure that generates different realizations of
thermal dust polarization foreground maps down to scales of 12 and 3 arcminutes.
The statistical properties of the maps were evaluated by computing angular power
spectra, comparing Minkowski functionals and studying the distribution of pixel
values. Minkowski functionals were also used as a tool to evaluate the training of
the neural network. The foreground maps generated by this model, will be used in
future work to tune algorithms that reconstruct the gravitational lensing potential
from CMB maps, to perform delensing of the CMB signal.
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1

Introduction

One of the open questions in cosmology is whether the theory of cosmic inflation is
correct and, if so, what are the details of the inflationary epoch. Among the predic-
tions of inflation, there is the production of primordial gravitational waves, the trace
of which should have remained imprinted in the patterns of the cosmic microwave
background B-modes polarization signal. Detecting B-modes is difficult because of
contamination from galactic foregrounds and distortion from gravitational lensing.
In this context, the ability to model realistic maps of the synchrotron and thermal
dust galactic emissions is crucial to build component separation algorithms that per-
form foreground cleaning and delensing of the primordial microwave background.
One of the current models for polarized thermal dust emission, named ForSE, uses
an algorithm based on convolutional neural networks, to create foreground maps
with non-Gaussian small scales features at a resolution of 12 arcminutes, starting
from Planck foreground polarization maps at 80 arcminutes.

The purpose of this thesis is to extend the scope of the ForSE package by adding
two functionalities. The first consists in introducing stochasticity in the model that
generates the foreground map, so that it is possible to create different foreground
map realizations. Having a dataset of various statistically equivalent maps is useful
to estimate the variance of the parameters computed from them. The second goal is
to use the model iteratively, to create foreground maps at the even higher resolution
of 3 arcminutes, which is close to the target resolution of the next future cosmic
microwave background experiments.

The present text is articulated in two main parts. Part I provides an introduction
to the topics of cosmology and computer science, that are necessary to understand
the thesis, as well as a description of the previous work on the subject. Chapter 1
gives an overview on the cosmic microwave background and galactic foregrounds.
It starts by explaining, in the context of the current cosmological model, what is the
CMB, how it formed, what is its phenomenology and how it is detectable today. It
goes on to describe the relevance of CMB polarization B-modes in relation to pri-
mordial fluctuations and the inflationary theory, stating the difficulties in detecting
their signal and the sources of contamination. A quick description of the most im-
portant CMB experiments and up to date findings is presented in the second part
of the chapter. Particular focus in given to the current knowledge about galactic
foregrounds, including the available observations and models. Chapter 2 is dedi-
cated to the topic of neural networks. It explains, from the basics, the concepts of
deep learning, network training and the structural components of a neural network.
Particular attention is paid to convolutional and generative adversarial networks
and their employment in image recognition and image generation. The end of the
chapter is dedicated to an overview of the most notable recent applications of convo-
lutional neural networks in the fields of cosmological simulations and astronomical
observations. Chapter 3 presents the "Foreground Scale Extender" (ForSE) Python
package, developed by Dr. Krachmalnicoff and Dr. Puglisi, which provides a model
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for thermal dust galactic emission based on neural networks. The characteristics of
the model, the methodologies used for its development and the principal results are
discussed.

Part II contains the core of the thesis’ work. It gives motivation for the impor-
tance of the subject, describes the methodologies used and analyzes the obtained re-
sults. Chapter 4 addresses the implementation of stochasticisty in the ForSE model,
in order to produce different realizations of foreground maps. The performance of
the network training is discussed and the statistical properties of resulting maps are
analyzed. Chapter 5 focuses on the iteration of the approach described in chapter
4, to produce foreground maps with higher resolution. The details of the iteration
precedure are explained and the resulting maps are shown. Finally, chapter 6 shows
how the results from the previous chapters can be used to produce full sky fore-
ground maps and discusses the characteristics of such maps.
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Chapter 1

Cosmic Microwave Background

The purpose of this chapter is to present the theoretical and observational frame-
work within which the work of this thesis is located. The first part, will give a gen-
eral overview on the topics of cosmological expansion, primordial fluctuations and
inflation as well as a description of the phenomenology of the cosmic microwave
background, including decoupling, polarization, harmonic decomposition and lens-
ing (Baccigalupi, 2021, Krachmalnicoff and Poletti, 2021, Hu and White, 1997). In
particular, the relevance of the detection of CMB polarization B-modes will be high-
lighted by explaining how the latter are linked to primordial gravitational waves
and inflation (Kamionkowski and Kovetz, 2016). In the second part, the problem
of foreground contaminants to the CMB will be presented, along with an overview
of the current foreground data and models. The description of cosmological pro-
cesses is given from a more qualitative point of view, taking for granted the reader’s
knowledge of the formalism, while the characterization of the quantities pertaining
the CMB radiation is carried out in more detail.

1.1 An Expanding Universe, Photon Decoupling and CMB
Formation

On the very large scales, the distribution of matter and energy in the universe ap-
pears to be homogeneous and isotropic and can be described by the perfect fluid
stress-energy tensor (SET):

Tµν := (ρ + p)uµuν + pgµν , (1.1)

where ρ is the energy density, p the pressure and uµ the 4-velocity of the fluid. The
metric of a spacetime manifold with a homogeneous and isotropic distribution of
energy and matter is the Friedmann-Robertson-Walker (FRW) metric:

ds2 = dt2 − a2(t)
[︃

dr2

1 − kr2 + r2 (︁dθ2 + sin2 θdϕ2)︁]︃ , (1.2)

which describes a universe that can be foliated into maximally symmetric spatial
hypersurfaces with curvature K = −1, 0, or 1, which expands with the scale factor
a(t). From the Einstein’s equations (Einstein, 1916):

Gµν =
8πG

c4 Tµν (1.3)
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the rate of expansion of the scale factor is regulated by the Friedmann equations:

H2(t) :=
ȧ2

a2 =
8πG

3
ρ − K

a2 , (1.4)

ä
a
= −4πG

3
(ρ + 3p) , (1.5)

together with the equation of state for the perfect fluid:

p = ωρ . (1.6)

Different energy sources are present in the universe and they may be distinguished
into the categories of matter, i.e. collisionless, non-relativistic dust particles with
ω = 0, radiation, which consists of ultrarelativistic particles with ω = 1/3, and dark
energy, characterized by ω = −1. From the previous three equations it results that
the energy density scales differently with the scale factor for different sources: for
radiation ρR ∝ a−4, for matter ρM ∝ a−3, while for dark energy ρDE = const. As the
universe expands, the fraction of the total energy density relative to each component
varies. In particular, for sufficiently small values of the scale factor, radiation was the
dominant component. Then, with growing scale factor, it became matter and lastly
dark energy. So we speak of a radiation dominated era (RDE), during which the scale
factor expanded as a(t) ∝ t1/2, a matter dominated era (MDE), in which a(t) ∝ t2/3,
and a dark energy dominated era, where the scale factor grows exponentially in time
as a(t) ∝ eHt (Carrol, 2013).

At early times during the RDE, when the density of particles was high enough, all
the different relativistic species were kept in thermal equilibrium by particle interac-
tions. As the universe expanded, the energy density and the temperature associated
with the plasma of particles decreased. When the energy scale was not sufficient to
keep the rate of interactions higher than the rate of expansion, the particles involved
in the interaction decoupled, meaning that they stopped interacting and began free
streaming across the expanding universe. The first species to decouple were neu-
trinos, which during the RDE ceased to interact weakly with baryons and formed
the cosmic neutrino background. Later on, during the MDE, also photons decou-
pled from baryonic matter, creating what is now the cosmic microwave background
radiation (Peebles, 1993).

Before decoupling, photons were kept in thermal equilibrium with protons and
electrons by electromagnetic (EM) interactions. But at redshift z = 1100, the energy
scale was sufficiently low to allow for protons and electrons to form neutral atoms,
under a process called recombination, and, as a consequence, photons started to
stream freely. The radiation present at the time of recombination kept travelling in
all directions, with energy decreasing because of the ongoing expansion of the uni-
verse, until now, when it is detectable in the microwave range at a temperature of
T = 2.725 K. The set of points where the CMB photons that are detected today on
earth were originally emitted make up a spherical surface, called the last scattering
surface (LSS). The decoupling was not instantaneous, it occurred over an interval
∆z = 100, which determines the thickness of the LSS. By observing the CMB radi-
ation, it is possible to gain information about the density distribution at the decou-
pling epoch, as well as about all the phenomena and objects that affected the CMB
between the LSS and now, notably reionization and gravitational lensing.

The cosmic microwave background is partially linearly polarized, due to the
scattering processes at the LSS. Indeed, since decoupling was not instantaneous, the
photons could scatter off electrons multiple times, covering a distance equal to the
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thickness of the LSS, before the last scatterer. Thomson scattering is the classical
elastic scattering of a photon off a charged particle. Its differential cross section is
proportional to the square of the product between the polarization vector of the in-
cident wave and that of the scattered wave:

dσT

dΩ
∝ |ε · ε′|2 (1.7)

Therefore, in the directions orthogonal to the polarization of the incident radiation,
the scattered wave has higher intensity and is polarized parallel to the incident one.
If the incoming radiation is isotropic, the Thomson scattered radiation does not have
a net polarization. On the contrary, for anisotropic radiation, in particular in the
presence of quadrupole intensity anisotropies, Thomson scattering acts as a polar-
ization mechanism.

Anisotropies present at the time of the LSS left an imprint in the CMB that is
visible still today, both in total intensity and polarization. The intensity of the CMB
radiation in a particular sky direction depends on the energy density in the point
where the correspondent photons left the LSS. Photons last scattered from points
with over or under-densities, hence different gravitational potentials, are observed
with slightly different redshifts. At the LSS, quadrupole anisotropies in the density
generated quadrupole anisotropies in the radiation intensity, that resulted in the
polarization of the CMB radiation.

Today, after removing the average value and the dipole anisotropy caused by the
peculiar velocity of the earth with respect to the CMB, the fluctuations of the CMB’s
total intensity are of the order of 10−5 K. The polarization fraction, i.e. the ratio
between the amplitude of the polarized signal and the total intensity signal is 10%,
so the amplitude of the polarized signal is of the order of 10−6 K.

The causes of anisotropies are not to be attributed exclusively to the processes
dating back to decoupling. For example, the photons’ distribution may be altered
along their path by gravitational weak lensing due to the newly formed large scale
structures or by the plasma of particles ionized after the appearance of the first stars
in the reionization period.

1.2 Polarization and Harmonic Expansion of the CMB Field

From an observational point of view, the CMB signal is an EM radiation coming
to the Earth from every direction in the sky. So two quantities can be measured
for every sky position: the total intensity of the EM field and the direction of its
polarization. The intensity can be described by a scalar field (Θ(n̂)), defined on a
sphere spanned by the sky coordinates1, while the polarization is represented by a
spin-2 field, also defined on the sphere. If we call (Ax, Ay) the components of the
amplitude of the EM field along axis x̂ and ŷ orthogonal to n̂, the total intensity is
defined as:

Θ(n̂) :=
(︂
⟨A2

x⟩+ ⟨A2
y⟩
)︂
(n̂) (1.8)

1The system of sky coordinates used in this thesis is that of galactic longitude and latitude (l,b).
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The two components of the polarization field are usually expressed in terms of the
Stokes parameters for linear polarization, which are defined as:

Q(n̂) :=
(︂
⟨A2

x⟩ − ⟨A2
y⟩
)︂
(n̂) = Θx(n̂)− Θy(n̂) (1.9)

U(n̂) :=
(︂
⟨A2

x′⟩ − ⟨A2
y′⟩

)︂
(n̂) = Θx′(n̂)− Θy′(n̂) (1.10)

where (x, y) and (x′, y′) are two pairs of perpendicular axis rotated 45◦ apart2. Under
a right handed rotation ψ around the axis n̂, the Q and U fields mix with one another:

Q −→ Q cos 2ψ + U sin 2ψ (1.11)
U −→ −Q sin 2ψ + U cos 2ψ (1.12)

so it might be better to work with the two fields (Q ± iU)(n̂), which under rotations
only acquire a phase factor:

(Q ± iU)(n̂) −→ e∓2iψ(Q ± iU)(n̂) (1.13)

Like every function on the sphere, also the CMB fields can be decomposed into a
basis of scalar and rank-2 tensor spherical harmonics3:

T(n̂) = ∑
ℓm

aℓmYℓm(n̂) (1.14)

(Q + iU)(n̂) = ∑
ℓm

a+2
ℓmY+2

ℓm (n̂) (1.15)

(Q − iU)(n̂) = ∑
ℓm

a−2
ℓmY−2

ℓm (n̂) (1.16)

The coefficients aℓm, a±2
ℓm , with ℓ = 0, 1, . . . and m = −ℓ, . . . ,+ℓ are sufficient to fully

characterize the total intensity and polarization signals. This decomposition is based
on the Q and U observables that are directly linked to the polarization vector. How-
ever, a decomposition on a different basis might serve to highlight different charac-
teristics of the two polarization fields. It is customary to define new coefficients:

Eℓm =
1
2
(︁
a+2
ℓm + a−2

ℓm

)︁
(1.17)

Bℓm =
1
2i

(︁
a+2
ℓm − a−2

ℓm

)︁
(1.18)

(Zaldarriaga and Seljak, 1997). The E and B coefficients are named in this way be-
cause they have a distinct behaviour under the parity transformation n̂ → −n̂: E
coefficients acquire a sign (−1)ℓ while B coefficients get a sign (−1)ℓ+1, just like the
electric and magnetic fields. Stretching further the analogy with electromagnetism,
E-modes are curl-less fields, while B-modes are divergence-less fields.

2In general, polarized radiation is described also by the Stokes parameter V for circular polarization,
but the polarization of the CMB is only linear.

3Regarding the multipole decomposition, note that higher values of ℓ correspond to spherical har-
monics with smaller scale features. The correspondence between the variability angular scale θ of
a spherical harmonics, and the multipole ℓ is not precise, because a particular harmonic may have
features that vary on small scales in one direction and on large scales in another. Anyway, a rough
estimate of the correspondence may be given by the relation ℓ = π/θ, especially on small scales. This
relation will be used in the following, whenever needed.
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The angular power spectrum of the CMB signal is usually computed in the E-
modes, B-modes decomposition:

CΘΘ
ℓ =

1
2ℓ+ 1 ∑

m
|aℓm|2 CΘE

ℓ =
1

2ℓ+ 1 ∑
m
(aℓmE∗

ℓm) (1.19)

CEE
ℓ =

1
2ℓ+ 1 ∑

m
|Eℓm|2 CΘB

ℓ =
1

2ℓ+ 1 ∑
m
(aℓmB∗

ℓm) = 0 (1.20)

CBB
ℓ =

1
2ℓ+ 1 ∑

m
|Bℓm|2 CEB

ℓ =
1

2ℓ+ 1 ∑
m
(EℓmB∗

ℓm) = 0 (1.21)

The correlation between total intensity (T) and B-modes or E-modes and B-modes
is 0 because the interactions that involve the CMB photons are parity invariant,
so modes with different parity behaviour are not correlated. The relevant angular
power spectra to compute are the pure TT, EE or BB modes and the TE correlation.
The temperature and polarization primordial anisotropies of the CMB radiation are
determined by the early universe fluctuations (see section 1.3), so they should be
Gaussian as well, meaning that the harmonic coefficients have Gaussian distribu-
tions with variances:

⟨alma∗l′m′⟩ = CΘΘ
l δll′δmm′ ⟨almEl′m′⟩ = CΘE

l δll′δmm′ (1.22)

⟨ElmE∗
l′m′⟩ = CEE

l δll′δmm′ ⟨almBl′m′⟩ = 0 (1.23)

⟨BlmB∗
l′m′⟩ = CBB

l δll′δmm′ ⟨ElmB∗
l′m′⟩ = 0 (1.24)

However, if non-Gaussianities were present in the primordial fluctuations, they should
also appear in the CMB anisotropies. The presence of non-Gaussianities in the CMB
are also due to gravitational lensing and foreground contamination (see sections
1.3.1 and 1.5), and it is important to take them into account when measuring the
primordial ones.

1.3 Primordial Fluctuations, Inflation and B-modes

It is widely assumed that, before the radiation, matter and dark energy dominated
eras, there was another period of exponential expansion called inflation. The as-
sumption of an inflationary epoch provides an elegant solution to a few problems in
cosmology. The most relevant ones are the flatness problem, namely the fact that the
universe is almost flat even though flatness is an unstable state, the horizon problem,
i.e. the fact that regions of the universe too distant from each other to have ever been
in causal contact appear homogeneous and thermalized, and the problem of missing
observations of magnetic monopoles. The inflationary hypothesis also provides an
explanation for the origin of the large scale structures in the universe, predicting that
they formed from the gravitational collapse of primordial quantum fluctuations that
were stretched by inflation to very large scales (Guzzetti et al., 2016).

Apart from the observations of flatness, super-horizon homogeneity and missing
monopoles, that first motivated the inflationary paradigm, other predictions of the
theory are that:

• The density fluctuations at the end of inflation are adiabatic, meaning that the
ratio between the fluctuations and the average value of the density is the same
for all species of particles.
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• The primordial fluctuations are mostly an isotropic Gaussian random field,
with a power spectrum of the form:⟨︂

∆(k̄)∆∗(k̄′)
⟩︂

∝ δ(k̄ − k̄′)
P(k)

k3 (1.25)

for a fluctuation ∆. Depending on the inflationary model, the presence of a
small amount of non-Gaussianities is also predicted.

• The spectrum of the fluctuations is almost scale invariant, i.e. it follows a
power law:

P(k) ∝ kns−1 (1.26)

where the spectral index ns is very close to 1, making P(k) almost constant.

• Inflation generated tensor perturbations of the spacetime metric, i.e. primor-
dial gravitational waves. The amplitude of these fluctuations varies among
different inflationary models and is quantified by the tensor-to-scalar ratio:

r :=
∆2

t
∆2

s
(1.27)

between the amplitude of the tensor fluctuations and the amplitude of the
scalar ones.

All these predictions have been proven consistent with observational data, except
for primordial gravitational waves, which have not been detected yet. Measuring
a tensor-to-scalar ratio different from zero would mean having the last piece of evi-
dence in support of the inflationary theory.

The privileged source for information about the inflationary epoch is the CMB,
because it retains the imprint of the fluctuations’ distribution at the time of recom-
bination. This is particularly true for what concerns the observations of primordial
gravitational waves, whose traces can be found in the B-modes signal.

Primordial perturbations are the fluctuations in space of the components of the
stress-energy tensor (i.e. density, pressure, shear and velocity of the primordial
plasma) and of the metric tensor. The time evolution of these perturbations is de-
termined by the linearized Einstein’s equations4, which relate the variations of the
SET to the metric variations and their derivatives. The fluctuations of both ten-
sors can be distinguished in scalar, vector and tensor perturbations, depending on
their behaviour under rotations. Scalar perturbations are fluctuations of the energy
density of the plasma. At the last scattering, quadrupole scalar anisotropies with
(ℓ = 2, m = 0) cause a net irrotational flow of photons, which produces through
Thomson scattering a curl-free polarization pattern in the radiation, i.e. CMB po-
larization E-modes. Vector perturbations are fluctuations in the plasma’s vortical
motions and, because of the Doppler effect, they would cause quadrupole moments
with (ℓ = 2, m = ±1) in the temperature, that would generate a polarization pat-
tern in the CMB with both a curl-less and a divergence-less component, hence both

4Non-linear structures, such as galaxies or clusters of galaxies, formed only relatively late in the
universe timescale, so the linearized equations are sufficient to describe the evolution of perturbations
from primordial fluctuations to decoupling.
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E and B-modes. However vector perturbations are washed out during inflation, be-
cause they evolve only into decaying modes on super-horizon scales5. So no vector
perturbation is present at the time of decoupling and their trace is not detectable in
the CMB polarization modes. Tensor perturbations are the deviations of the spatial
components of the metric tensor from the FRW metric, namely gravitational waves
(GW). These perturbations are transverse and traceless, so they stretch the distance
between test particles in directions orthogonal to the propagation of the wave, con-
serving the area of the plane orthogonal to the wavevector. Primordial GWs produce
quadrupole tensor anisotropies with (ℓ = 2, m = ±2) in the temperature at the LSS.
The resulting polarization affects both E and B-modes in the CMB.

Summing up, CMB polarization E-modes can be produced by scalar and tensor
perturbations, while CMB polarization B-modes are produced only by tensor per-
turbations. This is why the detection of a B-mode signal in the CMB polarization is
an evidence of primordial gravitational waves and therefore a confirmation of the
inflation theory. From the detection of primordial B-modes it is possible to compute
the tensor-to-scalar ratio, which is linked to the energy scale of inflation, enabling us
to distinguish among different inflationary models (Baumann, 2012, Kamionkowski
and Kovetz, 2016).

1.3.1 B-modes Power Spectrum and Lensing Contamination

The experimental detection of B-modes is not an easy task. The difficulty lies in the
fact that the primordial signal, if present, is covered by B-modes produced by grav-
itational lensing and by contamination from the galactic foreground. Overlooking
contaminants to the CMB polarization anisotropies, the B-modes power spectrum
should present two distinct wide peaks, one at large angular scales (ℓ ≲ 20) due to
re-scattering at reionization and the other at the degree scale (ℓ ∼ 80, θ ∼ 2◦), dating
back to recombination. In addition, there is a strong contribution to the signal due
to B-modes induced by gravitational lensing.

The fact that scalar perturbations cannot excite polarization B-modes, is true only
in the linear regime of cosmological perturbation, that lasts until the formation of
large scale structures by gravitational collapse. When density perturbations are not
linear anymore, the photons’ paths are bent by the gravitational potential of large
scale objects present nearby, in a way that transfers power from the E-modes to B-
modes, under what is called E/B mode mixing due to weak lensing. Even in the
absence of primordial B-modes, after the effect of weak lensing, a signal in B-modes
appears. On average, the photons emitted at the LSS undergo a total deflection of
a few arcminutes due to the repeated deviations caused by incoherent gravitational
lenses. Therefor, weak lensing affects the B-modes power spectrum with a peak at
small angular scales (ℓ ∼ 1000). The impact of lensing is not negligible, indeed, the
amplitude of the lensing signal at the angular scales of the recombination bump is
equivalent to the amplitude of primordial B-modes with r ≃ 0.02 (Hanson et al.,
2013, Louis et al., 2017). Therefore, it is important to tune correctly the algorithms
that reconstruct the lensing potential and then perform delensing on the CMB total
intensity and polarization maps. The features of the B-modes power spectrum are
shown in fig. 1.1, where one can see the reionization and recombination bumps, and
the lensing contribution. The primordial B-modes’ spectrum depends linearly on

5The evolution of primordial perturbations has different behaviours depending on the type of per-
turbation (scalar, vector, tensor) and whether the perturbation scale is larger or smaller than the Hubble
radius.
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the tensor-to-scalar ratio and in the figure it is plotted for two different values r. The
E-modes and temperature spectra are also plotted for scale comparison.

FIGURE 1.1: Expected angular power spectra of the CMB temperature, E-modes
and B-modes signals. For B-modes possible primordial power spectra are plotted
for two different values of r and the contribution of lensing B-modes is also shown.
Adapted from Bersanelli et al., 2012.

Another source of non-primordial B-modes comes from the foreground emis-
sions that mix with the CMB radiation. They will be discussed more extensively in
section 1.5.

1.4 Overview of Past and Future CMB Experiments

Since the discovery in 1964 of the existence of a cosmic microwave background ra-
diation (Penzias and Wilson, 1965, Dicke et al., 1965), many different experiments
were performed to measure the CMB signal and its black body spectrum, as well as
build maps of the temperature and polarization anisotropies and the corresponding
power spectra. The ultimate main goal of CMB investigations is to determine as
precisely as possible the cosmological parameters of the ΛCDM model, which is the
current model of our universe.

CMB observations may be carried out by ground-based telescopes, balloon-borne
probes or space satellites. The most relevant advances in our understanding of the
CMB come from the full sky data recorded by three satellites launched by NASA and
ESA: COBE, WMAP and Planck. The first one was launched in 1989. It measured the
almost perfect black body spectrum of the CMB radiation (Bennett et al., 1993) and
detected the small anisotropies. WMAP’s mission started in 2001 and produced full
sky maps of the CMB anisotropies in total intensity and polarization at five differ-
ent frequencies, and angular power spectra of the anisotropies with clearly defined
peaks (Bennett et al., 2013). The resolution of the sky maps was further improved
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by the results from Planck satellite (Planck Collaboration I, 2020), active between
2009 and 2013. Most of today’s knowledge on CMB comes from Planck’s observa-
tions, which produced full sky maps in total intensity (for nine frequency bands)
and in polarization (for seven frequency bands) with resolutions down to the de-
gree scale. Multi-frequency observations, in the range between 30 and 857 Hz, were

FIGURE 1.2: Temperature fluctuations of the CMB after removal of monopole,
dipole and foregrounds. Adapted from ESA and the Planck Collaboration https:
//www.cosmos.esa.int/web/planck/picture-gallery.

used to perform component separation to isolate the different foreground sources
and remove them from the total signal. Fig. 1.2 shows the famous map of CMB
temperature anisotropies obtained with data from Planck, after the removal of fore-
grounds. From the maps, the total intensity and E-modes power spectra as well as
the TE cross correlation were determined up to multipoles ℓ = 2500 for the first one
and ℓ = 2000 for the second two. The power spectra of the lensing potential was also
computed up to ℓ = 1000. Planck data allowed to determine almost all the cosmo-
logical parameters of the ΛCDM model down to a 1% error or lower. Regarding the
tensor-to-scalar ratio, using the total intensity and polarization power spectra from
Planck, together with data from the BICEP2/Keck Array experiment, the constraints
on r are set to r < 0.044 (Tristram et al., 2021).

With the completion of the Planck mission and the last data release in 2018
(Planck Legacy), the power spectra of temperature and E-modes have been deter-
mined up all physically relevant scales (Planck Collaboration V, 2020). Fig. 1.3
shows the combined results for the angular power spectra from all the recent ex-
periments. It is clear that the peaks and oscillations of the temperature and E-modes
spectra are fully characterized, while the B-modes spectrum is poorly defined and
is dominated by the lensing signal. So the CMB community has shifted the focus
on the goal (among few others) of measuring as precisely as possible the B-modes
power spectrum at all scales from the full sky up to the arcminutes, in the quest
for primordial gravitational waves. Detecting a tensor-to-scalar ratio different from
zero, would mean to learn many information about the physics of the very early uni-
verse, such as the energy scale and expansion rate of inflation. Otherwise, setting a
stricter upper limit on the value of r would rule out many of the simple theories of
inflation.

Currently, various experiments are under preparation. Some will involve ob-
servations from earth-based telescopes, while other will use satellite probes. The

https://www.cosmos.esa.int/web/planck/picture-gallery
https://www.cosmos.esa.int/web/planck/picture-gallery
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FIGURE 1.3: Compilation of CMB angular power spectrum measurements from
recent experiments. The dashed line shows the best-fit ΛCDM model to the Planck
temperature and E-mode and B-mode polarization power spectra. Planck Collab-
oration I, 2020.

Cosmic Microwave Background Stage-4 (CMB-S4) experiment will use dedicated
telescopes at the South Pole and in the Atacama plateau to scan a 3% portion of
the sky, with expected start date in 2029. Their goal is to reach an uncertainty of
σ(r) ∼ 0.001 on the tensor-to-scalar ratio, by measuring the recombination bump
at the degree scales (Abazajian et al., 2016). Another earth-based experiment, at the
Simons Observatory in the Atacama desert, will soon (2022) begin observations of
the CMB anisotropies using small-aperture and large-aperture telescopes. The latter
will scan 40% of the sky at the arcminute resolution (multipoles up to ℓ ∼ 1000), to
reconstruct the gravitational lensing potential and remove the distortion effect from
the CMB maps at degree scales (ℓ ∈ [30, 500]), which are provided by the small-
aperture telescopes on 10% of the sky. The experiment aims at building polarization
maps with one order of magnitude less noise than the Planck ones, so to measure
the tensor-to-scalar ratio up to σ(r) ∼ 0.003 (The Simons Observatory Collabora-
tion, 2019). Also the LiteBIRD satellite, planned to launch in 2027, will measure the
B-modes power spectra. It will observe the CMB on the full sky and target both the
reionization and the recombination bumps, up to multipoles ℓ ∼ 200, corresponding
to sub-degree angular scales (Sugai et al., 2020).

1.5 Foreground Contamination to the CMB

In addition to weak lensing, another source of non-primordial B-modes comes from
the foreground emissions that cover the CMB. Examples of contaminant sources are
the atmospheric and human-made EM radiations, the infrared cosmic background,
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active galactic nuclei emission, intracluster gas emission and, most importantly, the
emission from our galaxy.

The emission is highest in directions pointing towards the galactic plane, but it
is not negligible at any latitude. It is present at all frequencies (see fig. 1.4) and af-
fects the CMB signal down to the degree scales, while at lower scales it affects the
signal of the lensing potential, which has to be estimated carefully to perform de-
lensing (Beck, Errard, and Stompor, 2020). The foreground emissions have different
frequency dependencies and are relevant in different frequency ranges, so it is possi-
ble to separate the various foreground components from multi-frequencies measure-
ments of the incoming radiation and component separation algorithms. The impor-
tance of estimating correctly the galactic foreground became evident in 2014 when
the BICEP2 collaboration had to backtrack on the claim of a primordial B-modes de-
tection, after realizing that the galactic emission was not modeled correctly (BICEP2
Collaboration, 2014, BICEP2/Keck and Planck Collaborations, 2015).

At the moment, from WMAP and Planck data, the galactic foreground radiation
is resolved up to the degree scale on the full sky, while at lower scales, the amount
of noise in the galactic emission polarization maps does not allow to extract any in-
formation outside small portions of the sky (Planck Collaboration X, 2016). The fol-
lowing subsections will give a description of the knowledge and observations of the
galactic foregrounds as well as the foreground models that are currently employed
for component separation algorithms.

1.5.1 Current Galactic Foreground Data

Galactic emission arises from two different sources: synchrotron emission and ther-
mal dust emission. The first one originates from relativistic electrons accelerated
along the galactic magnetic fields, it is dominant at low frequencies (< 100 GHz)
and is highly polarized (polarization fraction up to 20%). Full sky polarization maps
of this foreground component, provided by WMAP and Planck, reach a resolution
of a few degrees (Planck Collaboration XXV, 2016), while maps with less noise are
available only on limited portions of the sky.

The second source is thermal dust emission, emitted by asymmetric dust grains
in the interstellar medium, that are aligned along the lines of the galactic mag-
netic field. This emission is highly polarized too, with E-mode twice as powerful
as B-modes (Planck Collaboration XXXVIII, 2016), and is dominant at frequencies
> 100 GHz. Today the best dust foreground maps are those made from Planck
observations at 353 GHz (Planck Collaboration XLVIII, 2016, Planck Collaboration
XXX, 2016). The dust foreground polarization maps in Q and U have a formal res-
olution of 5 arcminutes, but actually their features are resolved up to the scale of
ten arcminutes only at sky latitudes close to the galactic equator, where the signal
is stronger, while at higher latitudes the signal-to-noise ratio (SNR, i.e. the ratio be-
tween the power of the signal and the power of the noise) decreases, making features
distinguishable only up to the degree scale. Fig. 1.5 presents the foreground full sky
maps for synchrotron (in green) and dust (in red), obtained from Planck data using
a component separation algorithm named Commander.

Since both emissions depend of the shape of the galactic magnetic field, syn-
chrotron and thermal dust emissions show correlation up to the degree scale (Planck
Collaboration XI, 2020). Their angular power spectra follow a power law:

Cs/d(ℓ) ∝ ℓαs/d (1.28)
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FIGURE 1.4: Polarization amplitude root mean square (rms) as a function of
frequency and astrophysical components, evaluated at a smoothing scale of 40’
FWHM. The gray vertical bands indicate the frequency ranges of Planck mea-
surements. The green band indicates polarized synchrotron emission, and the red
band indicates polarized thermal dust emission. The cyan curve shows the CMB
rms for a ΛCDM model with τ = 0.05, and is strongly dominated by E-mode po-
larization. The dashed black lines indicate the sum of foregrounds evaluated over
three different masks with fraction of sky coverage 0.83, 0.52, and 0.27. The widths
of the synchrotron and thermal dust bands are defined by the largest and smallest
sky coverages. Planck Collaboration IV, 2020.

with αs = −3 for synchrotron (Krachmalnicoff, N. et al., 2018, Jew and Grumitt,
2020) and αd = −2.4 for dust, which can be expected to hold up to scales lower
than those currently resolved. The spectral energy distribution, i.e. the intensity
of the radiation as function of the emitted frequency, instead, is different for the
two components and makes their separation possible: it follows a power law for
synchrotron emission and it is that of black body for dust (fig. 1.4).

The frequency dependence of the polarization amplitude of synchrotron and
dust emissions are shown in fig. 1.4, together with the CMB E-modes polarization
amplitude, against the frequency bands of the Planck measurements. It is clear syn-
chrotron emission dominates at low frequencies, while dust emission dominates at
high frequencies.

1.5.2 Galactic Thermal Dust Foreground Models

Modeling thermal dust foregrounds is not trivial, because of the complex features in
the emission maps, together with the fact that the emission presents significant non-
Gaussianities (i.e. non-null n-point correlation functions) and time variability (Coul-
ton and Spergel, 2019)). Taking into account non-Gaussianities in the foreground
models is important. Indeed, since weak lensing also induces non-Gaussianities in
the radiation pattern, not accounting for them in the foreground model could lead
to a biased reconstruction of the lensing potential and hence an incorrect estimation
of the B-modes spectrum (Beck, Errard, and Stompor, 2020). Also, not considering
non-Gaussianities in the foreground might affect the possible detection of primor-
dial non-Gaussianities in the CMB polarization signal.
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In preparation for the new CMB B-modes experiments described in section 1.4,
foreground models are necessary in order to test the data analysis pipeline, i.e. the
component separation, foreground subtracting, lensing reconstruction and delens-
ing algorithms. The foreground models should have a resolution equal at least to the
target resolution of the future observations, ideally at the arcminutes scales, which
is difficult to achieve, since the available foreground maps reach resolutions at the
degree scale.

FIGURE 1.5: Commander 2018 polarized synchrotron (upper figure) and ther-
mal dust (lower figure) amplitude maps at respectively 40’ and 5’ FWHM reso-
lution, evaluated at a mono-chromatic reference frequency of respectively 30 and
353 GHz. Planck Collaboration IV, 2020.

Currently there are mostly two approaches for creating models of the galactic
emission. The most common models of polarization dust emission are based on fore-
ground maps and power spectra from previous experiments (WMAP and Planck).
These models (such as the Python Sky Model, Thorne et al., 2017 and the Planck
Sky Model, Delabrouille, J. et al., 2013) are reliable up to the scales at which the
experimental foreground maps are signal dominated, which means up to the de-
gree scale. Below that limit, smaller scale features can be added to the model in the
form of a Gaussian field. This is done by extrapolating the power law spectra of
the emission maps down to the desired scale and adding to the maps a Gaussian
random field realization with a power spectra correspondent to the extrapolated
one. This method allows to have models that have small scale features with the cor-
rect amplitude, but oversimplified statistics. Another approach consists in building
the foreground emission from direct modeling of the interstellar medium through
magnetohydrodynamics simulations, where turbulence is introduce by supernovae
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explosions. This method, proposed by Kim, Choi, and Flauger, 2019, is able to gener-
ate galactic foregrounds with realistic properties, such as the E-B-modes asymmetry.
However it has the downside of not producing a realization of the foreground with
the large scale morphology of the real one. A combination between the two meth-
ods was carried out by Vansyngel, F. et al., 2017, who modeled the galactic magnetic
field with a Gaussian turbulent component and a power law power spectrum, using
constraints on the simulation parameters so that the polarization power spectra of
the emission reproduced the spectra of real one. This model can produce foreground
maps with resolution up to 0.5◦.

Recently, Krachmalnicoff and Puglisi, 2021 proposed a new method for thermal
dust foreground modeling in total intensity and polarization, based on the use of
deep convolutional generative adversarial neural networks. The model is able to
produce foreground maps with real large scale feature and small scale non-Gaussian
features up to 12 arcminutes of resolution. The work of this thesis (presented in part
II) consist in improving this model (which is described in detail in chapter 3) by
adding variability and reaching the higher resolution of 3 arcminutes.
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Chapter 2

Neural Networks

Putting aside for a moment the subject of CMB and galactic foregrounds, this chapter
will give an overview of the concepts of deep learning and neural networks that are
useful to describe the algorithms used in the thesis (Krachmalnicoff, 2020). It is not a
comprehensive review of the topic, rather it presents the essential definitions and ex-
planations required to understand the Deep Convolutional Generative Adversarial
Networks (DCGANs), that were implemented in the code and data analysis scripts.

2.1 Introduction to Neural Networks

Traditional programming mostly consist in developing algorithms which encode a
specific function in order to perform a task, taking some data as input and returning
some data as output. Differently, the field of machine learning (ML) aims at build-
ing algorithms that learn by themselves which is the best function to perform the
required task, without being explicitly programmed. A particular subfield of ML is
Deep Learning (DL), which uses a variegated set of ML algorithms, characterized by
a complex logical structure with multiple layers of nodes and connections, that deal
with huge amounts of input data. Such algorithms are called Artificial Neural Net-
works (ANN), or simply Neural Network (NN), because they were initially inspired
by and have a similar structure to the biological networks of neurons in the human
brain.

Before a NN algorithm is able to perform the task it is designed for, a prepara-
tory phase called training is required, so that the NN "learns" how to produce the
correct output. There are two main ways in which this can be done: supervised and
unsupervised learning. Supervised learning is based on the use of labeled datasets
of input/output pairs. It is usually applied to situations where the ML algorithms
has to learn the underlying relation between elements from two datasets. Unsuper-
vised learning, instead, is performed without labeled example data and it is used
to identify unknown patters in a dataset. The most common unsupervised learning
methods are clustering, association and dimensionality reduction, while supervised
learning includes two main methods: classification, when the output set contains a
finite number of elements, and regressions, when the output set consist of one or
more continuous parameters. In the following, only supervised learning will be dis-
cussed, because this is the method relevant to the network used in the thesis. For
a NN, supervised learning consists in using the input/output pairs as reference ex-
amples to optimize the network parameters so that the NN learns to reproduce the
correct output for any given input. The training procedure will be explained in detail
in the following sections.
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2.1.1 Feed-Forward Neural Network

In data analysis, there exist particular classes of tasks that can be done very easily
by a human being but are hard to encode in an algorithm. Usually they involve the
extraction of semantic information from spatially and temporally distributed data.
Example of these tasks can be understanding the main topic of a written text, rec-
ognizing words from an audio signal or identifying the subject of a picture. These
tasks fall under the computer science fields of semantic, speech and image recogni-
tion. These are all situations where neural networks can be way more effective than
traditional algorithms and solve the task much faster than a human being.

For a neural network, the problem of data recognition can be defined as follows.
One wants to implement a function f that maps an input x to the correspondent
output y = f (x), but the explicit form of f is not known. The goal then becomes
to find the best approximation to the function f . This task can be accomplished by
a feed-forward NN, which is a NN that has no recursive loops in its structure, but
just receives an input, processes it across a sequence of logical layers and than re-
turns an output. To perform the function approximation, the NN defines a function
f ∗(x, θ) that has to be optimized in the θ parameter space until it is close enough to
the desired function f . NNs are able to simulate extremely different and complex
functions because they apply iteratively a linear combination of the input data and a
non-linear activation function. From the non-linearity, the complexity of the possible
functions arises.

2.1.2 The Perceptron and Fully Connected Feed-Forward NN

The basic blocks that make up a neural network are nodes characterized by a set of
parameters and an activation function, together with the ability to receive input and
send output in the form of arrays or matrices.

FIGURE 2.1: Diagram of the Perceptron model. White circles contain input/ouput
data, red ones contain the parameters and blue boxes the functions applied. Krach-
malnicoff, 2020.

The first and one of the simplest nodes to be defined is the Perceptron (Rosen-
blatt, 1958, illustrative diagram in fig. 2.1), which works according to the following
sequence of actions:

1. it receives an input x in the form of an array of values,

2. it makes a linear combination of the input values using a parameter b and a
vector of parameters w

w · x + b ,
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3. it computes the output y by applying an activation function, in this case the
step function Θ, to the linear combination

y = Θ(w · x + b) .

Many perceptrons can be assembled in parallel to build a layer of the neural network
and the layers can be assembled in sequence to create a fully connected multi-layer
feed-forward neural network, where the output of each layer is used as a input to
the following layer (fig. 2.2). Fully connected means that every node in a layer is
connected by a non-zero weight to every node in the previous and the following
layer. In this way, the neural network is composed by an input layer

x =

⎡⎢⎢⎢⎣
x1
x2
...

xninput

⎤⎥⎥⎥⎦ , (2.1)

consisting of an array of dimension ninput, a sequence of hidden layers, each with a
parameter vector bi of dimension ni and a parameter matrix wi of dimension ni−1 ×
ni:

bi =

⎡⎢⎢⎢⎣
b1
b2
...

bni

⎤⎥⎥⎥⎦ wi =

⎡⎢⎢⎢⎣
w11 w12 · · · w1ni

w21 w22 · · ·
...

...
. . .

wni−11 wni−1ni

⎤⎥⎥⎥⎦ , (2.2)

and an output layer y, often in the form of a scalar value. All the coefficients in the b
vectors and w matrices are called the parameters, or weights of the neural network,
while the number and dimension of the hidden layers define the architecture of the
NN and are two of the NN hyperparameters, i.e. the parameters that determine the
structure of the NN and the features of the learning process. Neural networks can
have up to thousands of layers and tens of millions of parameters. The higher the
number of layers, the deeper the NN is said to be.

2.1.3 Learning Process

Before a NN is ready to perform its task, it must undergo three preparatory steps
through which it will "learn" how to produce the correct output, using the dataset of
labeled input/output pairs. These are:

1. training

2. validation

3. testing

and, accordingly, the dataset is divided into training dataset, containing the greater
fraction of the data (around 80%), validation dataset and testing dataset, usually of
the same size (around 10% each). During training, the NN parameters are optimized
so that the NN output is as close as possible to the output of the labeled data. Val-
idation is the step in which the NN hyperparameters are tuned by comparing the
performance of different setups. Testing measures the performance of the optimized
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FIGURE 2.2: Schematic representation of a feed-forward NN. Blue nodes represent
input/ouput data, while red circles represent the output data from each layer.

Each black line before layer i represents the weights w(i)
n,m, b(i)n that are applied to

the layer’s input before activation. A network of this kind is called fully-connected
because each node is connected to all nodes in the previous and the following
layers. Note that this is a very simple architecture, in real applications networks
can have up to ∼ 103 layers and ∼ 107 parameters. Adapted from Krachmalnicoff,
2020.

network. The following paragraph will present these steps more in detail, focusing
on possible issues that may arise.

Training The processing of the input across hidden layers is the way by which the
NN applies the function f ∗(x, θ). Let’s see how one can measure how far f ∗(θ) is
from f and how it can be optimized. Considering a pair of labelled input/output
data (xj, ŷj), where ŷj is called the ground truth, and the corresponding NN output
yj obtained from input xj, one can define the loss function:

L(yj, ŷj) (2.3)

that measures the distance between the NN output and the ground truth. The loss
function concerns a single pair of labeled data, but, starting from it, the cost function
can be defined as:

J =
1
N

N

∑
j=0

L(yj, ŷj) (2.4)

that is the average of the loss function over the whole training set. The cost function
depends on the NN output, which in turn depends on the NN weights bi and wi.
The training step consists in finding the NN weights that minimize the cost function.
This is a simple optimization problem, made difficult however by the fact that the
dimension of the parameter space can be extremely large (up to ∼ 107 parameters).

Optimization algorithms The problem is solved by iterative approaches such as
the gradient descent, or one of its many variations. Applied to this situation, the
basic gradient descent algorithm consists of the following steps:

1. Initialize weights bs and ws.

2. Apply the NN to each input xj and obtain output yj.



2.1. Introduction to Neural Networks 23

3. Compute the cost function J on the outputs.

4. Check if the cost function is smaller than a fixed tolerance. If it is, stop training.

5. If not, update the weights to:

w → w − α
∂J
∂w

(2.5)

b → b − α
∂J
∂b

. (2.6)

where α is the learning rate of the optimization algorithm.

6. Repeat from point 2.

The learning rate is a hyperparameter that controls how fast the model changes at
each optimization step. The difficult part of the algorithm above is the computation
of the derivatives in point 5. Indeed, in order to compute the derivative with respect
to each weight, one has to apply the chain rule starting from the weights of the last
layers back to those in the firsts. This process takes the name of backpropagation.

Each iteration of the gradient descent takes a lot of time, because computing the
full gradient with respect to all parameters is computationally expensive. To reduce
the time required for an iteration, it is possible to compute the gradient only with
respect to a subset of variables, that are chosen randomly at every iteration. This
method is called stochastic gradient descent (SGD) algorithm and it enables faster
iterations at the expense of the rate of convergence. For the optimization of cost
functions, the stochastic gradient descent, or modifications of it, are the preferred
algorithms. To train the neural network used in this thesis work, a popular varia-
tion of the SGD, named Adam, was chosen (Kingma and Ba, 2017). This particular
algorithm, assigns a different learning rate αi to each weight, instead of a global one
for all weights, and updates each of the αi’s depending on the average and vari-
ance of the last gradients with respect to weight i. Such a set up is appropriate for
optimization problems with a large set of parameters and noisy gradients.

Validation, Testing and Overfitting. The validation step is meant to find the best
hyperparameters for the NN architecture, by testing the network on a different dataset
than the one used for training. Therefore, during validation, the weights are kept
fixed, while the hyperparameters are adjusted by hand, to see which set up yields
the lowest cost function over the validation dataset. The tunable hyperparameters
include: the number of layers and their dimension in terms of nodes, the connections
among nodes, the learning rate, the weight of the regularization term, the dropout
rate and the number of elements in each minibatch (see definitions in the following
paragraph). In the NN, the activation function, which is usually a variation of the
step function, can be modified as well. A desirable characteristic of the activation
function is that it yields a non-zero derivative when backpropagating (fig. 2.3).

The testing step takes place after training and validation. During testing nothing
is updated in the NN, but the performance of the network is evaluated over a new
dataset, to give a measure of how well the network can execute the classification or
regression.

A possible problem when training a NN is overfitting the parameters, in the
sense that they are optimized for the data in the training set but they are not adequate
for a new generic dataset. Also the validation step can lead to overfitting the network
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FIGURE 2.3: Examples of the most common activation functions. Usually, func-
tions that have non-zero or infinite derivatives (such as in the four cases on the
left) are preferred. Activation functions of the ReLU type (such as the three cases
in the second row) are useful to have a linear response, but limited to a certain
interval of values.

to the validation dataset. This is the reason why the training, validation and testing
must be performed on independent datasets.

The number of iterations, during training, beyond which overfitting might start
to happen can be shown by plotting the cost function calculated over the validation
or testing set as a function of the number of iterations of the optimizing algorithm.
Indeed, while the cost function over the training set is expected to decrease continu-
ously, the cost function over the validation set is expected to reach a minimum and
then grow again (fig. 2.4). Before the minimum, the NN weights are underfitting
the data, after the minimum, they are overfitting it, hence the minimum marks the
optimal amount of fitting, at least for what concerns the optimization of the cost
function.

Another source of overfitting is the possible complexity of the loss function. To
avoid it, a regularization term R, weighted by the hyperparameter λ, might be added
to the cost function

J =
1
N

N

∑
i=0

Li + λR(L) (2.7)

in order to increase the cost function when the complexity of the loss function in-
creases.

Dropout, Batch Normalization, Batch Segmentation Another possible problem
when training, is that the network might rely on the weights of some specific nodes
while others remain irrelevant. To prevent this, one can switch off a random selec-
tion of nodes at each iteration of the optimization algorithm so that the processing of
the input is distributed across the whole network. This technique is called dropout.

A technique to improve training is to divide the training set in minibatches and
use a different minibatch at each iteration of the optimization algorithm. The cycle
of using all the minibatches is called an epoch. Many epochs might be needed to
complete the training.
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FIGURE 2.4: Qualitative example of overfitting due to the number of iterations
of the optimization algorithm during training. The optimal fitting is found at the
number of iterations corresponding to the minimum in the cost function computed
over the validation or training set. Adapted from Krachmalnicoff, 2020.

When performing numerous numerical calculations on a machine, it is often ad-
visable to work with normalized data in order not to risk overflow or approximation
errors. So it is recommended to normalize the NN input to unit values. In addition
to this, renormalizing the volume of data before each activation layers has shown to
make the NN training faster and more stable. This procedure is called batch normal-
ization and requires the following steps:

1. Before the application of the activation function, the output z(k)i of a neuron i in

layer k, is re-centered and re-scaled to the average µ
(k)
i and standard deviation

σ
(k)
i of the variable z(k)i over the whole training set:

z̄(k)i =
z(k)i − µ

(k)
i√︂

σ
(k)2
i + ϵ

(2.8)

so that the new output z̄(k)i has zero mean and unit variance over the training
set.

2. The linear transformation:

z̃(k)i = γ(k)z̄(k)i + β(k) (2.9)

is applied to z(k)i and the result passed to the activation function. γ(k) and β(k)

are optimizable weights of the network.

Batch normalization may be applied to the whole training set or to minibatches, if
the training set is subdivided in that way.

2.2 Convolutional Neural Networks

There are many different setups and families of neural networks, adapted to specific
computational tasks or particular data formats. This section will present Convolu-
tional Neural Networks (CNN), which are NNs specifically structured to deal with
input and/or output in the form of pixel-based images. First introduced by LeCun
(LeCun et al., 1989), these kind of networks are nowadays applied in many differ-
ent fields where image recognition, image reconstruction or image simulation are
useful.
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2.2.1 CNN Components, Hyperparameters and Architecture

The neural networks described in the previous section are structured to handle data
shaped in the form of a 1-dimensional array and indeed each layer could be thought
as a one dimensional array of nodes. Images, however, are in the form of 2-dimensional
matrices, for monochromatic pictures, or triplets of 2-dimensional matrices for multi-
color pictures1. It is true that a matrix of any dimension could be reshaped in the
form of a vector, but it would be inefficient and ineffective to handle pictures in this
way, because the spatial information encoded in nearby pixels would be lost. There-
fore CNN were specifically adapted to pass data from layer to layer, maintaining it
in the form of a 2 or 3-dimensional matrix.

CNN Layers Let us consider a square picture of size L × L × 3, with elements x,
and a filter, i.e. a matrix of size F × F × 3, with elements w. The size of the picture
must be greater than a few multiples of the filter size and the depth of the filter
(i.e. its third dimension) must be the same as the picture depth (in this case 3), or
in general as the depth of the 3D matrix to which it is applied. A convolutional
layer of a CNN performs a discrete convolution between the 3 image color channels
and the filter. By convolution, it is intended that the filter is gradually shifted along
every possible position on the image and for ever position the sum of the pixelwise
product:

∑
i

xiwi (2.10)

among pixels covered by the filter is calculated and saved as a pixel value in a new
picture (or matrix). Therefore the output from the convolution layer is a matrix of
size (L − F + 1)× (L − F + 1)× 1. In reality, many filters of the same size, let’s say
N, can be applied in the same convolution layer, each producing an output matrix,
making the size of the total output matrix (L − F + 1) × (L − F + 1) × N. For a
schematic representation of these concepts see fig. 2.5. Then, the activation function

FIGURE 2.5: A convolution layer in a CNN is based on the action of filters. A filter
(represented by the small blue rectangle) runs across all possible positions over the
input data matrix (red rectangle). An output value, given by the dot product in eq.
2.10, corresponds to each position. The size of the output matrix is determined by
the size of the input one and the size of the filter, while its depth depends on the
number of filters applied. Krachmalnicoff, 2020.

is applied to the value in each pixel to produce the layer’s output, which will be

1Colorspaces are 3-dimensional vector spaces, so each color can be defined by three parameters.



2.2. Convolutional Neural Networks 27

also the next layer’s input. Each pixel in the newly created image then acts as a
node of the neural network, while the coefficients w in the filters are the weights of
the NN. Differently from the previous NNs, here each node is not connected with
every node in the previous layer, but only on a subset of them, named the receptive
field, determined by the shape of the filter. During the optimization procedure, the
weights in the filters are optimized to detect characteristic features present in the
images. Their values remain constant during a convolution, which implies that the
relevance of a particular pattern, learnt by the filter, doesn’t depend on its location
in the image. Also, filters are not rotated, so each of them detects a particular feature
with a particular orientation. The CNN is able to detect and learn as many patterns
or features as the number of filters.

Other kinds of layers that are used in the CNN’s design are pooling layers, which
aim only at reducing the dimensionality of the data by downsampling methods,
such as average value or extreme value downsampling. Convolution layers and
pooling layers are usually used in CNNs that take images as inputs and perform
classification. However, in CNNs where the output is an image as well, also decon-
volution and upsampling layers are used. These kinds of layers just perform the
reverse actions as those described above.

Usually the architecture of a CNN consists of a sequence of alternating convo-
lution layers and pooling layers plus some fully connected layers. As the input is
processed further in the layers, the dimension of the image is reduced while the
image depth grows. See fig. 2.6 as an example of a CNN architecture

FIGURE 2.6: Example of a possible CNN architecture. The diagram illustrates the
evolution of the data size and depth as it advances across fully connceted, pooling
and convolution layers. This specific example refers to an image classification
CNN. Krachmalnicoff, 2020.

Hyperparameters The hyperparameters that must be chosen in a convolution layer
are:

• the size of the receptive field F, i.e. the size of the first two dimensions of a
filter;

• the number N of different filters;

• the stride S, i.e. the length, in pixel units, of the displacement of the filter
between two consecutive positions;

• the zero padding P, i.e. the number of pixel columns and rows with zero values
that are added to the input image, if a precise output size is required;

while those for a pooling layer are:
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• the downsampling ratio, i.e. the ratio between the size of the output image
and the input image;

• the downsampling method, e.g. average value, extreme value, etc.

A convolutional layer with hyperparameters F, N, S and P, transforms an input
matrix of volume L × L × D into an output matrix of volume L′ × L′ × N with:

L′ =
L − F + 2P

S
+ 1 (2.11)

2.3 Generative Adversarial Neural Networks

A particular use of CNNs is in Generative Adversarial Networks (GANs) which, as
the name says, consists in a framework for data generation through an adversarial
process between two competing neural networks. Presented in 2014 by Goodfellow
et al., it has now become one of the main tools for image generation (Goodfellow
et al., 2014). In the following, GANs will be discussed in the specific case where the
neural networks involved are CNNs.

A GAN is made of two neural networks that are trained together. One is the
discriminator (D), whose task is to distinguish between images that belong to a ref-
erence set (the training set) and images that don’t. The other is the generator (G),
whose task is to create images that are as similar as possible to those in the reference
set, so that D cannot distinguish among them. More formally, D is a function that
receives an image (2D array) as input and returns a value between 0 and 1 which
represents the probability that the image belongs to the training set as opposed to
being generated by G. G, instead, is a function that maps samples from a random
noise distribution (in the form of a 1D or 2D array), taken as input, to output images
belonging to a certain distribution. During training, the weights of D are optimized
so that images from the training set are assigned a probability of 1 and images made
by G are assigned a probability of 0, while at the same time the weights of G are
optimized so that D makes a mistake (i.e. D assigns 1 to images from G). The com-
petition between these two optimization processes leads to a unique point in the
parameter space where the weights are optimized so that images from the training
set and images from G are both assigned the same probability, which turns out to be
1/2.

Let’s put this into formulas. We call x an image belonging to the training set and
pX the underlying distribution of reference images. In the same manner, we call z
a noise realization and pZ the distribution from which the sample Z is drawn. The
output of the generator is G(z) while that of the discriminator is D(x) for reference
images and D(G(z)) for generated images. A possible loss function can be defined
over pairs of reference and generated images as:

LD,G(x, z) = log(D(x)) + log(1 − D(G(z))) (2.12)

with a correspondent cost function:

JD,G = ⟨log(D(x))⟩pX
+ ⟨log(1 − D(G(z)))⟩pZ

(2.13)

A loss function of this kind is called binary cross-entropy loss function. Binary be-
cause it is used in a binary classification of an input in two categories, cross-entropy
because it contains the Von Neumann entropy formula summed for two different
variables. The overall training process aims at finding the minimum over all the
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possible functions G of the maximum over all the functions D of JD,G. The simul-
taneous training of D and G occurs at alternating steps. First, keeping G fixed, D
undergoes k ≳ 1 steps (k is an hyperparameter) of the chosen iterative optimization
method, then G undergoes 1 step of the optimization method, and this is all repeated
until convergence is reached. The balance between the optimization steps of the two
networks is set up so that D remains close to its optimal value but doesn’t reach
it, in order to avoid overfitting, while G changes slowly compared to D. A possible
implementation of the GAN training algorithm, is the following:

1. sample m reference elements xi from pX,

2. sample m noise realizations zi from pZ,

3. update only the weights of D using a gradient method with:

∇wD

1
m

m

∑
i=1

[log (D(xi)) + log (1 − D(G(zi)))] (2.14)

4. repeat steps 1-3 for k times

5. sample m noise realizations zi from pZ,

6. update only the weights of G using a gradient method with:

∇wG

1
m

m

∑
i=1

[log (1 − D(G(zi)))] (2.15)

7. repeat from point 1 until convergence.

Fig. 2.7 shows a possible structure for a GAN network.

FIGURE 2.7: Example of a possible GAN architecture example. The Generator NN
(in blue) evolves an input noise vector across deconvolution layers to produce an
image. The Discriminator NN (in orange) receives an image as input and, after a
sequence of convolution layers, classifies it into real or fake.
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2.3.1 Deep Convolutional GANs

Convolutional Generative Adversarial Networks look like a powerful tool for gen-
erating artificial but realistic images. However, a problem is that, in general, the
training of convolutional GANs is unstable and may result in non effective gener-
ators. In particular, training is difficult when trying to upscale a GAN network to
deeper networks and to handle higher resolution images (which means a greater
number of input output data). To ensure an efficient and effective training, Radford
and Metz established a set of characteristics that the architecture of the convolutional
GAN should display (Radford, Metz, and Chintala, 2016). A networks of this type is
named deep convolutional generative adversarial network (DCGAN) and it should
have the following features:

• All upsampling and downsampling layers in the network should be convolu-
tional or deconvolutional layers rather than pooling or upsampling functions.
This allows the network to learn its own down(up)sampling rather than hav-
ing a deterministic one.

• Input and output layers should be connected directly to convolution layers,
rather than to an intermediate fully connected layer. This increases conver-
gence speed, without reducing stability too much.

• Apply batch normalization to each layer except to the generator’s output and
the discriminator’s input. Normalization is helpful for a correct flow along the
gradient in the optimization process and ensures that the generator doesn’t
collapse to one point (i.e. it returns the same output for any input). A overuse
of normalization, though, might lead to model instability (i.e. the generator re-
turns completely different outputs for similar inputs). The above prescription
finds the balance between the two extremes.

• Implement the Tanh activation function in the generator’s output layer, the
ReLU activation function in all other layers of the generator and the LeakyReLU
in all the discriminator’s layers.

The training of DCGANs has proven to be successful in image recognition and
image generation applied to images of handwritten digits, faces, house interiors and
various subjects. So DCGANs’ present a solid architecture that promisingly can be
applied to the most various image sets.

2.4 Neural Networks Applications in Cosmology

Astrophysics and cosmology are fields where very often data comes in the form
of images, e.g. sky maps or objects surveys. So it doesn’t come as a surprise that
in the last years GAN-based algorithms have found many application for different
kinds of simulations, such as increasing resolution of observational or simulated
images, adding or separating features from sky maps or estimating parameters from
complex models. The following paragraphs give a short and non-comprehensive
overview of some interesting applications.

Dark matter simulations On the large scales of the universe, gravity shaped the
distribution of dark matter into complicated structures, known as cosmic web. The
current theoretical model for the evolution of the universe is the lambda cold dark
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matter model, which gives a mechanism for the growth of structures from the pri-
mordial fluctuations after the inflationary period. The ΛCDM predictions about the
distribution of structures depend on the values of the model parameters. There-
fore, it is important to simulate the evolution of structures for different values of
the model parameters, in order to confront the latter with the estimates of parame-
ters from galaxy surveys and CMB observations. The formation of large scale, dark
matter structures, for a given set of cosmological parameters, can be studied with
classical N-body simulations, that evolve the system, i.e. trace the particles’ posi-
tions and velocities in a volume of space, from a certain initial condition up to the
present epoch. N-body algorithms are, by their nature, computationally very expen-
sive, with computational time growing fast with resolution or scale. Recently, some
huge numerical simulations have been carried out (e.g. Springel et al., 2005), but
there is still the need to obtain large scale, high resolution results in feasible com-
putational time. Convolutional neural networks offer an efficient solution and can
be useful in different ways. For example, a GAN can be trained on a set of 2D or
3D square arrays that represent a snapshot of the particle density from a dark matter
N-body simulation (Ullmo, Decelle, and Aghanim, 2021, Rodríguez et al., 2018). The
GAN learns the patterns and features of the particle density function and then is able
to generate other 2D or 3D snapshots that are statistically indistinguishable from the
original ones (fig. 2.8). In this way new data is generated, without the need of ad-
ditional simulations. Another way in which GANs can be employed in dark matter
simulations is by using them to increase the resolution of a simulation. Indeed, a
GAN can be trained to learn the function that links the density distribution resulting
from a simulation at low spatial resolution (LR), to the density distribution from a
simulation with the same initial conditions but higher spatial resolution (HR). Once
the GAN is trained, it is possible to obtain HR simulations at the computational cost
of LR simulations only (Kodi Ramanah et al., 2020, Li et al., 2021).

FIGURE 2.8: On the left, images from 2D dark matter N-body simulations. On the
right, images generated from a GAN trained on the reference set of images on the
left. Adapted from Ullmo, Decelle, and Aghanim, 2021.

Dark matter and galaxy distribution Simulating the complete evolution of galax-
ies is even more computationally expensive than simulating dark matter because, in
addition to gravity, also hydrodynamics, electromagnetic forces and radiative pro-
cesses must be taken into account. It has been shown that there is a strong correla-
tion between the galaxy and dark matter distributions (Wechsler and Tinker, 2018).
So CNNs, with a particular U-net architecture (Ronneberger, P.Fischer, and Brox,
2015), can be trained on input/output pairs of correspondent dark matter/galaxy
distributions, in order to learn the underlying relation between the two. Then the
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trained network can be applied to new dark matter distributions, to produce galaxy
distributions in a shorter computational time (Zhang et al., 2019).

Galaxy features recovery and classification Large sky surveys provide catalogs of
numerous images of astronomical objects. Background and instrumental noise limit
the resolution of these images, especially for distant objects. Classical techniques,
such as deconvolution, can be employed, to recover object features ruined by noise,
but their effectiveness is limited. Convolutional Networks then may come into play.
A convolutional GAN can be trained on pairs of degraded (noisy) and non-degraded
pictures to recover the mapping from pictures with few noisy features to pictures
with many sharp features. Once the network is trained, the mapping can be applied
to other degraded images. This method has been applied by Schawinski et al., 2017
to images of galaxies from the Sloan Digital Sky Survey (SDSS). They showed that
GANs were able to recover many more and less noisy features than conventional
methods. In the context of galaxy surveys, CNNs are also useful to classify the type
of galaxy present in a picture based on its shape (e.g. Zhu et al., 2019). For this
kind of task, the network needs a supervised learning, during which it is trained on
catalogs of galaxies already classified by hand.

Galactic foreground In CMB data analysis, convolutional networks are useful in
modeling galactic foreground, in the prospect of separating the foreground emission
from the background signal. Deep convolutional neural networks (DCNN) have
found application for reconstructing masked parts of sychrotron and dust emission
maps (Puglisi and Bai, 2020). They showed effective in inpainting a non-Gaussian
signal, without altering the rest of the statistics of the emission. Using a DCGAN,
Aylor et al., 2020, were able to model total intensity galactic dust foreground emis-
sion with non-Gaussian features, training the networks on maps from Planck satel-
lite. The DCGAN was trained on output square maps covering 1% of the sky, and
it learned to generate emission maps with the same features of the training set.
The work showed promising results for extending the application to polarized fore-
ground emission maps and to larger portions of the sky. These works show that
CNNs are a powerful tool to generate non-Gaussianities in foreground emissions
and reproduce different realizations of foreground maps.

Just to give an idea of the wide range of applicability of GANs in cosmology
and astrophysics, other successful applications can be mentioned, such as the use
of GANs to create weak-lensing convergence maps that are statistically indistin-
guishable from the simulated ones (Mustafa et al., 2019), or the application of un-
supervised DCGANs for recognizing chemical characteristics of exoplanets atmo-
spheres(Zingales, T. and Waldmann, 2018).
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ForSE Package

As explained in section 1.5, galactic emission is well known at scales greater than
1◦, but detailed radiation maps are not available at sub-degree angular scales for
the full sky (or for large portions of it). In preparation for the next generation of
CMB experiments, it is important to characterize as precisely as possible the galactic
emissions at all angular scales, since it has a critical impact on the observations of
gravitational lensing and primordial B-modes. To obtain a clean CMB signal, the
foreground emission from the galaxy must be removed from the total signal, both in
total intensity and polarization. The component separation algorithms that perform
this procedure, require a solid and detailed model of the galactic emission, otherwise
there is risk of introducing spurious signals in the observations of the background.
Foreground models are also used in the algorithms that estimate the gravitational
lensing potential in order to delens the CMB maps.

Models of the galactic emission are complicated, because of the high degree
of non-Gaussianities, time variability and the complicated emission features at all
scales. Available models are based on templates of the galactic emission (e.g. the
Python Sky Model and the Planck Sky Model), which allow to simulate the emission
at different microwave frequency channels. The maps from which these models are
created are not reliable at sub-degree scales because of the noise that contaminates
the signal. A way around this, is to extrapolate the power spectrum of the emission
template with a power law model up to multipoles corresponding to sub-degree
scales. Then to create a Gaussian field realization that has the same power spectrum
and add it in the sub-degree scales of the model. The models created with this pro-
cedure have a realistic amplitude (i.e. a correct power spectra), so at first order they
are correct, but the higher order n-point correlation functions, which determine the
statistics of the features in the emission maps, are not the same. Another possibility
for creating galactic emission models is to start from magnetohydrodynamical nu-
merical simulations of the interstellar medium. This method builds a model that
includes non-Gaussian statistics, but has no correspondence with the large scale
(super-degree) features of the radiation. As shown by Beck, Errard, and Stompor,
2020, neglecting to model non-Gaussianities in the synchrotron and dust emissions
models can lead to biased estimates of the B-modes power spectrum and of the lens-
ing potential, which in turn leads to incorrect delensing of the CMB polarized signal.

Recently, Krachmalnicoff and Puglisi, 2021 presented a new approach to galac-
tic foreground modeling, in particular thermal dust emission modeling, making use
of Neural Networks. They developed a Python package, called "Foreground Scale
Extender" (ForSE), based on a DCGAN that was trained to learn the mapping from
the galactic emission maps in low resolution (i.e. maps with super-degree scales
features) to the corresponding maps in high resolution (i.e. maps with sub-degree
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scales features)1. The learning was carried out over parts of the sky where maps are
available in both low resolution and high resolution. Afterwards, the trained net-
work generates the high resolution maps for parts of the sky which previously were
availale only in low resolution. The strength of this approach, which was applied
both to total intensity and polarization signals, is the ability to generate maps with
small scale features that display non-Gaussianities and large scale features alike the
real ones.

The topic of this thesis builds on the work of the ForSE package. So, in the fol-
lowing, I will explain the methodology used in its development, regarding network
architecture, network training, image analysis and data analysis, and present the
main results obtained.

3.1 Application of DCGANs to Thermal Dust Emissions

The goal of the project was to train a DCGAN to receive as input a low resolution
map of the thermal dust emission from the galactic plane and return as output a
high resolution version of that same map, for both total intensity and polarization
maps. The maps used to train the network were obtained with component sepa-
ration methods from Planck maps at a frequency of 353 Hz (Planck Collaboration
XLVIII, 2016), and precisely they are the 2018 Stokes I, Q and U Thermal Dust map from
GNILC, available at the Planck Legacy Archive2. These maps have an angular res-
olutions that varies depending on the signal-to-noise-ratio, with an effective beam
full-width-half-maximum (FWHM) varying from 5 arcminutes to 80 arcminutes.

To create a dataset of input-output pairs over which the network could be trained,
the above fullsky maps were decomposed in square patches, using the Healpy3

Python package, based on the HEALPix (Hierarchical Equal Area isoLatitude Pixela-
tion) pixelization scheme (Gorski et al., 2005). Each patch has dimension of 320px × 320px,
and covers a 20◦× 20◦ angle of the sky. Each patch is a monochromatic image, mean-
ing that it can be represented by a square matrix of real values, with size correspond-
ing the number of pixels per side.

We can assume that a patch M of an emission map, with angular resolution rSS,
is given by the sum of a patch MLS encoding the large scale structures up to a reso-
lution rLS, plus a patch MSS = MLS · mSS containing the small scale structures mSS
up to a resolution rSS, modulated by the large scales structures.

The patch decomposition is:

M = MLS + MSS = MLS(1 + mSS) (3.1)

or equivalently:

M
MLS

= m̃SS = 1 + mSS (3.2)

The goal of the NN training is to learn the underlying relation that maps patches
MLS to patches m̃SS.

Note that, if not otherwise specified, by resolution it is intended the resolution
of the features shown in the patch of the full-sky map, i.e. the scale of the smallest

1The package, with code, input data and results, is available for public access at https://github.
com/ai4cmb/ForSE.

2Planck Legacy Archive: https://pla.esac.esa.int/#home.
3Healpy documentation: https://healpy.readthedocs.io/en/latest/.

https://github.com/ai4cmb/ForSE
https://github.com/ai4cmb/ForSE
https://pla.esac.esa.int/#home
https://healpy.readthedocs.io/en/latest/
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features, not the pixel resolution, which is referred to rather as number of pixel, pixel
size or similar expressions. It is also important to specify that the two are not related.
Indeed it is possible to have maps with the same resolution and different pixel size
or vice versa.

3.1.1 DCGAN Architecture

The network setup used in ForSE is that of a DCGAN, very similar as the one de-
scribed in Radford, Metz, and Chintala, 2016 (see chapter 2). The main difference is
that the generator takes as input not an array of noise, but rather a large scale (LS),
low resolution map MLS. The generator’s output is a small scale (SS), high resolution
map m̃gen

SS that should resemble the reference set SS maps m̃real
SS .

The architecture of the GAN is composed as follows. The generator G consists of

• 1 convolution layers, with a 5 × 5 kernel, no stride and 64 filters, which takes
input in the form of 320 × 320 matrices;

• 1 convolution layers, with a 5 × 5 kernel, stride equal to 2 and 128 filters;

• 1 convolution layers, with a 5 × 5 kernel, stride equal to 2 and 256 filters;

• 3 upsampling layers combined with convolution ones, with dimensions sym-
metric to the first three layers.

The discriminator D has

• 3 convolution layers identical to those in the generator;

• a flattening layer that arranges the output of the previous layer in a 1D array;

• an output node, densely connected to the previous layer

In all encoding layers (first three) for both G and D, the activation function is the
LeakyReLU. Batch normalization is applied at all steps. The output node in D is
activated with a sigmoid function. The loss function is binary cross-entropy, the
optimization algorithm is Adam. For a schematic idea of the GAN structure refer to
fig. 3.1.

3.1.2 DCGAN Training and Testing

The DCGAN approach to thermal dust emission can be applied both to maps of the
signal in total intensity and to maps of polarized signals in Q and U decomposition.
However, the truly relevant application is the second one. Indeed, the next gener-
ation of CMB experiments will focus on the polarized signal to look for traces of
primordial B-modes and to reconstruct the gravitational lensing of the CMB. Also,
for polarized radiation, the resolution of foreground maps is consistently worse than
in total intensity maps, because the signal is less powerful. For GNILC (Generalized
Needlet Internal Linear Combination) thermal dust emission maps in total inten-
sity, the FWHM of the effective beam ranges between 5 and 22 arcminutes, with
more than 40% of the sky were it is below 12 arcminutes. For the same maps in po-
larization, the FWHM ranges between 5 and 80 arcminutes, staying lower than 12
arcminutes in less than 9% of the sky. Therefore, the NN resolution enhancement can
be tested first on the total intensity map and successively applied to the polarization
maps. Below I will describe the methodology for the training on total intensity maps
and later explain the specifics of its application to polarization maps.
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FIGURE 3.1: Explanatory diagram of the architecture of the DCGAN used in
ForSE. Arrows represent (de)convolution plus activation layers, red rectangles are
filters and yellow parallelepipeds represent the volume of the data matrix at each
step. Krachmalnicoff and Puglisi, 2021.

Total Intensity Training A specific area of the whole full sky map was selected
with the requirement of having a SNR above 8 and galactic latitude above 10◦4.
Pairs of high-resolution/low-resolution patches (MLS, m̃real

SS ) in the training set were
selected only if at least 80% of the patch was covered by such mask (fig. 3.2). To
create a small scale (SS) map and a large scale (LS) map, two smoothings of the
original map were applied, one with a beam of 12’ FWHM (for SS) and one with
80’ FWHM (for LS). A total of 350 randomly located and oriented pairs of square
patches of 20◦ × 20◦ side and 320 × 320 px were created from the smoothed full sky
maps in the masked area. Each patch was normalized in [−1,+1] before training.

From this set, the training was performed with batches of Nb = 16 pairs of
patches alternating the optimization of the two networks in the following way:

1. For Nb times, an LS patch MLS was given as input to G, which generated an
SS output patch m̃gen

SS , which was given as input to D. The cost function was
computed over the Nb outputs from D. The parameters of G were optimized
to maximize the probability that the patches m̃gen

SS were classified as real by D.

2. Afterwards, Nb/2 patches m̃gen
SS and Nb/2 patches m̃real

SS were given as input to D
and the cost function computed over the Nb outputs from D. The parameters
of D were optimized to maximize the probability of classifying the patches
correctly.

The two steps of the above training process were iterated for 105 times, and the
weights of D and G were saved every 103 iterations. To select the best NN param-
eter setup among the 104 saved ones, the generated patches were compared to the

4Portions of the sky too close to the galactic plane are overwhelmed with foreground signal and
thus are not exploitable for CMB measurements.
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FIGURE 3.2: Sky mask used for selecting the square patches used in the training
set. Patches were selected only if at least 80% of the patch was covered by the
colored area. Krachmalnicoff and Puglisi, 2021.

training set, using a statistical analysis based on the Minkowski functionals. The fol-
lowing section will describe in more detail what are these functionals and why they
are apt to quantify the statistical properties of images.

Polarization Training For polarization maps, the area of the sky where the res-
olution is above 12’ is very small (9% of the sky) and mostly close to the galactic
plane. So it was not possible to create an other mask from which realize enough
patches for the training set. To go around the problem, an assumption was intro-
duced, which is that the total intensity and the polarized field have morphological
features that share the same statistic. This is reasonable because the source of the
polarized and unpolarized emissions is thought to be the same (i.e. grains of dust)
and their two-point correlation functions are similar. Though reasonable, it is still an
arbitrary assumption, motivated by the fact that with the available data this is the
best guess we can do. Also, it should be clarified that the fact that the fields share
the same statistics does not mean that they have also the same morphology, i.e. that
they present spatially correlated realizations of that statistic.

Using this assumption, the training of the DCGAN for the Q and U maps can be
done exactly as before, but using Q(U) maps smoothed at 80’ as large scales patches
(MLS), paired with total intensity maps smoothed at 12’ as small scale patches (m̃real

SS ).
Again the 350 patches in the training set were selected from the masked area. The
training procedure was carried out in the same way as before, as well as the testing
of the training results.

3.2 Minkowski Functionals

Evaluating quantitatively the features of noisy images and comparing them to statis-
tical models is not always a trivial task. When the image contains structures with a
high degree of symmetry and order, it might be sufficient to compute variance, two-
point correlation functions and Fourier transforms of the density field (see definition
below) to capture the main characteristics. These descriptors, however, give infor-
mation only about characteristic distances, failing to capture morphological features.
Then, for images where patterns are of random and disordered nature, they become
insufficient and we need to define more adequate mathematical tools. Here I will
follow the definition of Minkowski functionals and their application to pixel-based
images given in Mantz, Jacobs, and Mecke, 2008.

Monochromatic 2D images can be thought as a density function ρ(x) defined on
a compact convex set of a two dimensional vector space: x ∈ C ⊂ R2. The density
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function takes values in a finite interval that represents the intensity of the color, on
a grayscale from black to white. For the moment, we will treat ρ as a continuous
function over a continuous domain, while later we will generalize to a discretized
function over a quantized domain, such as in the case of pixel-based images. To
describe the spatial features of structures created by the density function, we can
introduce, from the field of integral geometry, a family of morphological descriptors,
called Minkowski functionals.

In a d dimensional space, for a compact set A, d + 1 Minkowski functionals
m0, . . . , md can be defined. Calling ∂A the boundary of A, ωd = πd/2/Γ(1 + d/2)
the volume of the ball in d dimensions and Ri the principal radii of curvature for
i = 1, . . . , d − 1, Minkowski functionals can be defined as:

m0(A) :=
∫︂

A
dV (3.3)

for the first one and as:

mν(A) :=
ωd−ν

ωνωd

(ν − 1)!(d − ν)!
d!

∫︂
∂A

∑
{i1,...,iν−1}

1
Ri1 · . . . · Riν−1

dS (3.4)

for ν ≥ 1.
In the application to 2D pictures, the relevant case is d = 2, for which we have:

m0(A) =
∫︂

A
d2r⃗ (3.5)

m1(A) =
1

2π

∫︂
∂A

dr⃗ (3.6)

m2(A) =
1

2π2

∫︂
∂A

1
R

dr⃗ (3.7)

The first functional gives the covered area of the set, the second functional is propor-
tional to the length of its perimeter while the third one is proportional to its Euler
characteristic, which is the difference between the number of connected domains
and holes.

An important step that allows the generalization of these definition to discrete
domains, is a completeness theorem by Hadwiger that states the following.

Theorem 1 (Hadwiger) All and only the functionals F (A) , A ⊂ Rn, A compact and
convex, that can be written as a linear combination of Minkowski functionals

F (A) =
d

∑
ν=0

fν Mν(A) , fν ∈ R (3.8)

possesses the properties of additivity, motion invariance and continuity.

Additivity means that the functional of the union of two subset is the sum of the
functional of each subset minus the functional of the intersection of the two:

F (A ∪ B) = F (A) +F (B)−F (A ∩ B) (3.9)

The motion invariance property requires that the functional is independent of the
spatial position and orientation of the subset:

F (gA) = F (A) (3.10)
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where g ∈ G is an element of the translations and rotations group. Continuity im-
plies that if a sequence of subsets converges, An → A for n → ∞5, then also the
functional of the sequence converges:

F (An) → F (A) (3.11)

The first property is relevant because it allows to extend the computation of func-
tionals over convex sets to the computation of functionals over unions of convex sets
and a pixel-based image can be described as a real valued function over a domain
made by the union of compact convex sets, (for example each pixel is a compact con-
vex set). The third property, which means that if a set An is an approximation to the
set A, then also the functional F (An) is an approximation to F (A), is useful because,
in pixel-based images, complex curved shapes are approximated by a tessellation of
square pixels (from now on called pixelization). Finally, the second property is not
specifically related to discretized sets, but just states that the evaluation of spatial
features carried out by Minkowski functionals doesn’t take into consideration posi-
tion and orientation of shapes, which is an important attribute when working with
homogeneous and isotropic random fields.

FIGURE 3.3: Pixelization example for computing discrete Minkowski functionals.
As the pixel side length a tends to 0, the area of the pixelization Da tends to the
area of the shape D. The perimeter of the pixelization, however doesn’t converge
to that of the shape, so other methods must be used to compute it. If a is sufficiently
small, the Euler characteristic of the pixelization coincides exactly with that of the
original shape.

Let’s discuss how to compute in practice the three Minkowski functionals of a 2D
generic domain, named D, approximated with a pixelization of squares with side a,
named Da. As an example one can look at fig. 3.3.

• Computing the first Minkowski functional means to compute the area of D.
Since the area of Da tends to the area of D for a → 0, the functional m0(Da)
approximates correctly the value m0(D).

• The computation of the second Minkowski functional requires a more complex
approach because the perimeter of Da doesn’t converge to the perimeter of D.
To approximate correctly the perimeter P of a shape D from its pixelization Da,
a common algorithm, named marching squares (Lorensen and Cline, 1987), is

5Convergence is intended as convergence of the Hausdorff distance of the subsets An
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usually used. The algorithm approximates D with a polygon, based on inter-
polations between pixel values and it provides an approximated perimeter Pa
that converges to P for a → 0. The functional m1(Pa) approximates correctly
the value m1(P).

• The last Minkowski functional is easier to compute because it is purely a topo-
logical descriptor. The Euler characteristic can be computed as the difference
between the numbers N+ and N− of concave and convex angles of Da, divided
by four times the number of pixels Npx: m2(Da) = m2(D) = 1

2π
(N+−N−)

4Npx
.

FIGURE 3.4: Thresholding example. The color scale of the image on the left con-
tains 256 values, parametrized between 0 and 1. Thresholding an image means to
set all pixels with color values lower than a threshold ρ to black and all pixels with
higher color values to white. Pictures on the right are thresholded versions of the
original picture, for ten different threshold values.

Up to this point, pixelized images were assumed to be 2-color, black and white
pictures. One can apply the above concepts also to 256-color, grayscale images by
first performing thresholding. Thresholding consists in choosing a value ρ on the
grayscale (which is conventionally made of 256 values between 0 and 1) and then
setting to 0 (black) all pixels with values lower than ρ and to 1 (white) all pixels
with higher values. In this way, a two-color image is created. For a given 256-
color grey-scale image, 256 different thresholdings can be performed, resulting in
256 different images (see fig. 3.4). Minkowski functionals can be computed for the
black pixel subsets present in each thresholded image, making them function of the
thresholding value: mi = mi(ρ).

FIGURE 3.5: Exact Minkowski functionals mn(s) as functions of the normalized
threshold s = ρ/

√
2σ2. In black the random lattice, while in red the Gaussian

random field. For n = 0 the two functionals coincide, but greater differences
appear as n increases. Mantz, Jacobs, and Mecke, 2008.
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For some of the most common models of statistical fields, such as the random
lattice model and the Gaussian random field, the dependence of Minkowski func-
tionals can be calculated analytically. Figure 3.5 shows the exact ρ dependence of the
three Minkowski functionals for the random lattice and the Gaussian random field.

3.3 DCGAN Training Results

3.3.1 Total Intensity Results

To check how well the trained DCGAN was able to replicate the statistical properties
of real small scale patches from the total intensity map, Minkowski functionals were
computed on all the 350 real patches m̃real

SS and on the corresponding 350 generated
patches m̃gen

SS . Average value and standard deviation of the functional were com-
puted as function of threshold for all three functionals at each saved iteration of the
training procedure. The superposition of the areas included between ±1 STD from
the average functionals of the real patches and the average functionals of the gener-
ated ones gives a measure of how the training was successful. The NN parameters
corresponding to the iteration that gave the highest percentage of superposition in
Minkowski functional were chosen as those of the trained network. Fig. 3.6, shows
the comparison of Minkowski functional of the real SS patches and of the SS patches
generated from the trained network. The agreement is pretty good, with percent-
ages of 76%, 84%, 91% for m0, m1 and m2 respectively. In fig. 3.7, three examples

FIGURE 3.6: First three Minkowski functionals (here denoted as νn) as function of
the threshold ρ, computed for both real (blue) and generated (orange) SS patches
of the total intensity map. The diagrams show the average functional over the 350
patches from the training set and the 350 corresponding generated patches, plus
and minus 1 STD. Krachmalnicoff and Puglisi, 2021.

are shown of LS input patches (MLS), with corresponding real SS patch (m̃real
SS ) and

generated SS output patch (m̃gen
SS ).

Since the training over total intensity maps resulted successful, the NN approach
for generating small scales was extended also to polarization maps.

3.3.2 Polarization Results

With the assumptions and methods described in section 3.1.2, two different DC-
GANs were trained for Q and U maps to learn the mapping from Q/U large scale
patches (MQ/U

LS ) to total intensity small scale patches (M̃Ireal
SS ). Again, the parameters

of the trained networks were chosen by looking at the superposition of Minkowski
functionals. The two sets of images on which Minkowski functionals were com-
puted, were the set of 350 patches of real total intensity small scales and the set of
174 small scale patches generated by the trained DCGANs. Results were positive,
for both Q and U trainings: the best superposition percentage were (79%, 85%, 89%)
and (87%, 84%, 87%) respectively.



42 Chapter 3. ForSE Package

FIGURE 3.7: Patches from total intensity maps. Left column: large scale patches
with features up to 80’ used as input to the DCGAN. Right column: small scale
patches with features up to 12’ obtained as output from the DCGAN (here denoted
by m̃mock

SS instead of m̃gen
SS ). Middle column: real small scale patches with features

up to 12’. Both the real and the generated SS maps show trace of the LS structures,
meaning that the network learnt to transpose this kind of structural information
from input to output. Krachmalnicoff and Puglisi, 2021.

In the polarization case, the goal was not only to demonstrate that the DCGAN
was able to create small scale patches with the same statistics of the real ones, but to
actually create such patches in the areas of the sky where high resolution maps are
not available.

So the full sky Q and U maps, smoothed at 80’, were divided in a set 174 slightly
overlapping square patches. These LS maps were given as input to the trained DC-
GANs and corresponding SS maps were obtained for any area of the sky. Minkowski
functionals were computed for the generated 174 SS patches and compared to Minko-
wski functionals of the 350 total intensity SS patches of the training set (fig. 3.8).
As expected from the positive training results, the overlapping of the functionals
is pretty good. The small scales structures were also compared to realizations of a
Gaussian random field with a power spectra following a power law extrapolation of
the Q/U large scale power spectra up to 12’ resolution. From fig. 3.8, it is clear that
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the small scale structures generated with the DCGAN approach are different from
the Gaussian small scale structures, making the DCGAN approach a valid method
for generating non-Gaussian small scales. A more intuitive way to see that the struc-
tures generated by the NN are non-Gaussian is by looking at fig. 3.9 which com-
pares for Q and U an example of LS patch (MQ/U

LS ), generated SS patch (M̃Q/U gen
SS )

and Gaussian SS patch (M̃Q/U gss
SS ).

FIGURE 3.8: First three Minkowski functionals (here denoted as νn) as function
of the threshold ρ, computed for both real SS patches of the total intensity maps
(black), generated SS patches of the polarization map in Q and U (orange) and
Gaussian SS patches (green). The diagrams show the average functional over the
350 patches from the training set, over the 174 generated patches, over the 174
Gaussian realization patches, plus and minus 1 STD. Krachmalnicoff and Puglisi,
2021.

3.3.3 Reconstructing Full Sky Maps

To rebuild the new full sky maps with resolution everywhere up to 12’, from the set
of 174 NN-generated patches at 12’, a couple of steps must be performed.

The first one is to rescale the output SS patches from a [−1,+1] range to the
correct amplitude in physical units, which can be done by re-setting each patch’s av-
erage and STD value to those of the Gaussian SS patches. Then, each SS patch must
be re-multiplied by the corresponding LS patch, in order to obtain a map with both
large and small scales: MQ/U gen = MQ/U

LS · m̃Q/U gen
SS . To further refine the rescaling,

the maps MQ/U gen can be renormalized so that the power spectra of the small scales
equals the power spectra of the Gaussian small scales (see sections 4.1 and 4.3.1).

The second one consists in merging effectively the overlapping edges of the
patches, when putting them back together in the full sky map. The problem is that
the small scales generated close to the border of each patch are different from those
at the border of the neighbouring patches, so a simple averaging would show bor-
der effects. An apodization mask must be created, which ensures that patches are
merged smoothly, without discontinuities (see chapter 6). The averaging of different
small scales, however, tampers with the power spectra at high multipoles, which
appears lower than before the process. The effect is more pronounced for patches
at high latitudes, because the overlapping area between them is greater. The power
loss, in any case, remains below 50% for all latitudes except for patches at the galactic
poles which have a higher loss.
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FIGURE 3.9: Patches from polarization Q and U maps. Left column: large scale
patches with features up to 80’ used as input to the DCGAN. Middle column:
small scale patches with features up to 12’ obtained as output from the DCGAN
(here denoted by m̃mock

SS instead of m̃gen
SS ). Right column: Gaussian field realization

small scale patches with features up to 12’. Krachmalnicoff and Puglisi, 2021.

3.4 Discussion and Developments

The DCGAN approach proved successful in increasing the resolution of CMB fore-
ground thermal dust emission maps, by introducing small scale features with non-
Gaussian statistics and the correct power spectra, in low resolutions maps that had
only large scale structures. The parameters and the setup of the trained networks are
publicly available together with the scripts for visualising the maps and computing
Minkowski functionals and power spectra. The obtained Q and U full sky maps with
12’ DCGAN-generated features are also available for public access online6. They can
be useful for foreground simulations or delensing algorithms, expecially for testing
the data analysis pipeline in preparation of future CMB experiments (section 1.4).

In that context, there are some possibilities for further extensions of the ForSE
package. One is to find a way to introduce stochasticity in the SS maps generated by
the neural network. In that way, one could obtain maps with different realizations
of the small scale structure distribution, and so have more synthetic realistic data for
simulations. Having many different realizations of thermal dust maps would make
it possible to determine the variance of the quantities computed from the maps, in
particular the power spectra. An other possible development is to iterate the process
of small scales creation to reach even smaller scales, assuming a fractal structure in
the morphology of emission maps. Having foreground maps with resolution up

6Link to the maps: https://portal.nersc.gov/project/sobs/users/ForSE/.

https://portal.nersc.gov/project/sobs/users/ForSE/
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to the arcminute scale is important to meet the expected resolution goals of future
observations (e.g. Simons Observatory, LiteBIRD, Stage-4).

Elaborating on these two ideas, introducing stochasticity and iterating the ap-
proach to smaller scale, has been the main focus of my thesis. The next chapters will
explain in detail how they were developed and what results were obtained, provid-
ing more in depth motivation about why this work is relevant in the introduction to
each chapter.
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Part II
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Chapter 4

Implementing Stochasticity

The main difference between the original DCGAN architecture (Radford, Metz, and
Chintala, 2016) and the architecture of the DCGAN used in ForSE is the kind of
input received by the generator network. In the original set up, the input consisted
of a noise vector, i.e. an array of random values, while in the ForSE network the
input is a large scale patch, i.e. a 2D matrix containing structured information. Once
training is over, for a specific input Mi, the neural network always returns the same
corresponding output m̃i. In other words, the DCGAN works in a deterministic way.

This might not be a desirable quality. The small scale structures introduced in
the foreground maps with the NN approach are just a random realization of the
distribution underlying the real small scale field, i.e. there is no point by point corre-
spondence between NN-generated small scales and the real ones, but the two fields
share the same statistics (up to the limits of the network training). So it would be
useful to have a method for generating different realizations of the small scale field,
so that one could obtain any desired number of maps with the same large scales but
different small scales. Having many different maps would make it possible to esti-
mate the errors on the statistical properties computed from them. For example, we
could be able to compute error bars on the maps’ power spectra.

A possible way to introduce stochasticity in the network would be to introduce a
layer of random noise in the architecture of the GAN. The downside of this method is
that it would increase the instability of the network and make training, in particular
backpropagation, more difficult. An alternative is to apply a layer of noise directly
on the input maps. There are different ways to do this. One is to train the network
directly on a pure noise input, like the original DCGAN. The output in this case
would have only small scale structures, with no trace or spatial correlation with the
large scale ones. Another possibility is to add a layer of noise on top of the input
maps. The amount of noise can be decided by tuning the SNR between the noise
layer and the large scale maps. A different training has to be performed for each
choice of SNR and the resulting generated small scales are expected to depend on it.

I followed both approaches: the training with pure noise only, from now on re-
ferred to as noise training, and the training with noisy large scale patches, from now
on referred to as LS + noise training. The training done in ForSE, using pure large
scale patches, will be referred to as LS training.

Programming Language, Packages and Computing Facilities The algorithm for
building and training the ForSE network was written in Python1, using the Keras2 li-
brary and TensorFlow3 backend. Keras contains high-level functions that implement

1Python documentation: https://www.python.org/.
2Keras documentation: https://keras.io/.
3TensorFlow documentation: https://www.tensorflow.org/

https://www.python.org/
https://keras.io/
https://www.tensorflow.org/


50 Chapter 4. Implementing Stochasticity

the building blocks of deep learning algorithms, such as the layers of a network, the
cost function or the optimization algorithm. The low-level operations such as matrix
operations or convolutions are implemented by the tensor manipulation framework
Tensorflow. The operations required for training and using a neural network are
computationally expensive, so that they cannot be carried out by personal comput-
ers or standard workstations. Therefore the training of the ForSE network and all
other related computations were performed by on the supercomputer Cori at the
National Energy Research Scientific Computing Center (NERSC)4. All the data ma-
nipulation and analysis that didn’t require long computational times, as well as the
code for data visualization, were written and organized in Jupyter Notebooks.

The additional code that I have written, uses the same language, libraries and
facilities specified above.

4.1 DCGAN Training

As a preliminary step, before starting with the new kinds of trainings, I repeated the
LS training for Q and U maps exactly as described in section 3.1.2. A first reason was
to become acquainted with the procedures for running code on the NERSC facility,
but it was also an important confirmation of the results found in Krachmalnicoff and
Puglisi, 2021. Repeating the training also allowed me to have a LS trained network
to which compare the results of the other trainings. Overall, I ran the following
trainings (tab. 4.1):

• two LS trainings, for Q maps and U maps,

• one noise training,

• six LS + noise trainings for Q maps and U maps, with SNR = 1, 2, 10.

Note that for the noise training it was sufficient to train only one network for Q
and U maps, because the output reference set consisted in both cases of the total
intensity small scale patches and the input does not contain any information on the
large scales.

In all cases, the training procedure remained exactly the one described in section
3.1.2, except for the input. In the LS training, the input maps were the large scale
patches MQ/U

LS made from the masked area in Q and U maps and normalized be-
tween -1 and 1. In the noise training, the input maps were 2D matrices Mnoise of the
same size as the LS patches (320px × 320px), where each pixel was a random value
uniformly distributed between -1 and +1. In the LS + noise training the input maps
were given by the sum of the normalized large scale patches plus the noise matrices
divided by the SNR:

MQ/U
LS +

1
SNR

· Mnoise (4.1)

with the whole sum renormalized again between -1 and +1.
The LS trainings and the noise training were repeated for 100.000 iterations,

while the LS + noise trainings were repeated for 150.000 iterations, because in the
first trial trainings they were observed to converge in a longer time. Minkowski
functionals were computed for the resulting small scale patches and compared to
the Minkowski functionals computed over the total intensity small scale patches,

4NERSC web page: https://www.nersc.gov/.

https://www.nersc.gov/
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training input output SNR

LS MQ/U
LS m̃T

SS ∞

LS + noise
(︂

MQ/U
LS + 0.1 · Mnoise

)︂
m̃T

SS 10

LS + noise
(︂

MQ/U
LS + 0.5 · Mnoise

)︂
m̃T

SS 2

LS + noise
(︂

MQ/U
LS + ·Mnoise

)︂
m̃T

SS 1

noise Mnoise m̃T
SS 0

TABLE 4.1: List of DCGAN trainings. In all cases the networks are trained to
reproduce the total intensity small scale patches, from inputs of large scale patches
with different levels of noise.

just as described in section 3.3. The overlapping of the areas included within ±1
STD above or below the average of each functional was again used to determine
the best iteration. Fig. 4.1 shows the overlap of Minkowski functionals as function
of the number of iterations, for each functional and for each training. The parame-
ters chosen for the trained networks were those for which the average Minkowski
superposition (red line in the diagrams) reached its maximum.

The plots show that the best results were obtained when no noise was added to
the input maps, as one could expect, with the maximum superposition decreasing
as the SNR decreases. Anyway, overall good results were obtained also in the LS +
noise and noise trainings except for the U maps training with SNR = 2, which can
be taken as an example of a case when the training was unsuccessful. The training
of a neural network, indeed, is not a deterministic process, stochasticity being intro-
duced in the selection of training data, in the optimization method or in the dropout.
So, even if a training is performed with the same parameters and setup, it might lead
to different results each time it is done. In this case, the training was not repeated
again due to a lack of computational time5. A sign that indicates that convergence
in the training is reached, is a clear shift of the value around which the average
Minkowski superposition oscillates. In the LS trainings this happens around 15.000-
20.000 iterations, while in the LS + noise, SNR = 10, training this happens around
120.000-130.000, justifying the choice of a higher number of iterations. For the LS
+ noise trainings with lower SNRs it could be reasonable to think that convergence
would be reached with a even higher number of iterations, but increasing the train-
ing iterations, and hence the computational time, was not feasible. Regarding the
convergence of the noise training, a clear jump in average superposition happened
right at the beginning of the training process, with no later improvement. So prob-
ably the Minkowski overlap percentage could not be further improved with more
iterations. Another point to remark is that the introduction of noise in the NN, even
if at the input level, rather than in the network’s architecture, brings instability to
the model. In the LS trainings, wide oscillations around the average superposition
value are episodic, while in the other trainings they are continuous.

To express quantitatively the results of the DCGAN trainings, tab. 4.2 displays
the average superposition, in percentage, between Minkowski functionals of the

5A LS + noise training with 150.000 iterations needs approximately 30 hours to complete on the
NERSC supercomputer and time slots so big require a long waiting time before being granted.
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FIGURE 4.1: Superposition of Minkowski functionals, in percentage, as function
of the number of iterations of the training algorithm. The thin lines in blue, orange
and green line refer, in order, to the three Minkowski Functionals, while the red
thick line refers to the average among the functionals.
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generated SS patches in Q and U and of the real SS patches in total intensity, for each
training as well as the number of iterations corresponding to the trained network.

training m0 m1 m2 average iteration

LS (Q) 83% 83% 83% 83% 43.000
LS (U) 87% 86% 88% 87% 30.000
LS (Q) + noise, SNR = 10 75% 63% 69% 69% 122.000
LS (U) + noise, SNR = 10 69% 52% 63% 61% 126.000
LS (Q) + noise, SNR = 2 48% 53% 79% 60% 20.000
LS (U) + noise, SNR = 2 52% 37% 44% 44% 116.000
LS (Q) + noise, SNR = 1 58% 47% 58% 54% 92.000
LS (U) + noise, SNR = 1 50% 57% 61% 56% 40.000
noise 43% 49% 73% 55% 9.000

TABLE 4.2: Superposition, in percentage, of the Minkowski Functionals of the
generated SS patches in Q and U and the real SS patches in total intensity, for each
training.

The diagrams of the Minkowski functionals to which the percentages in tab.
4.2 refer to are shown in fig. 4.2, fig. 4.3 and fig. 4.4. These diagrams compare
Minkowski Functionals, computed on different sets of small scale (12’ resolution)
patches. The dashed line represents the average functional over each set of patches,
while the colored area represents 1 STD above or below the average functional. The
functionals in black/white are the ones of the real total intensity small scale patches,
that were the target set of images. The blue plots are the functionals of the Gaussian
field small scale patches. The orange, the green and the red plots, represent respec-
tively the functionals of the SS patches generated by the trained DCGAN in the cases
of LS training, LS + noise training, noise training. The plots of Minkowski function-

FIGURE 4.2: Minkowski functionals of the SS patches generated by the LS trained
network (orange), compared to those of the real total intensity SS patches (black)
and the Gaussian field realization of SS patches (blue). The dashed lines mark
the average functional, while the contours of the colored area represent ± 1 STD
above or below the average. First line is for Q maps, second line for U maps.

als in the LS training case show clearly the successful results of the training, since
the generated patches yield an almost perfect overlap with the patches in the train-
ing set for both Q and U. In the LS + noise training and in the noise training cases
the overlap becomes less exact, in accordance with the percentages in tab. 4.2. Still,
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FIGURE 4.3: Minkowski functionals of the SS patches generated by the LS + noise
trained network (green), compared to those of the real total intensity SS patches
(black) and the Gaussian field realization of SS patches (blue). The dashed lines
mark the average functional, while the contours of the colored area represent ± 1
STD above or below the average. The first two lines are the SNR = 10 case (first for
Q, second for U), the second two for the SNR = 2 case, the last two for the SNR = 1
case.
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FIGURE 4.4: Minkowski functionals of the SS patches generated by the noise
trained network (red), compared to those of the real total intensity SS patches
(black) and the Gaussian field realization of SS patches (blue). The dashed lines
mark the average functional, while the contours of the colored area represent ± 1
STD above or below the average.

in every training, the functionals of the generated patches are much more similar to
those of the total intensity patches than are those of the Gaussian patches.

A more intuitive way to see that the DCGAN-generated small scales, for Q and
U, are quite different from the Gaussian small scales is by looking at a comparison
between example patches. Fig. 4.5 presents two examples of output patches for all
trainings in both Q and U. The first line in the picture shows the LS patch used as
input to the trained DCGAN. From the second to the fifth line, there are, in order,
the SS output patches from the LS training, the LS + noise training (SNR from 10 to
1) and the noise training. The last line shows the Gaussian patches. The small scales
in each column are the NN outputs corresponding to the input in the first line, apart
for the noise training patches. The first two columns refer to the same portion of the
sky (the first column with the Q map, the second with the U map), and the same
holds for the third and fourth column. The large scale maps in the first line and the
Gaussian maps in the last one are normalized between -1 and +1, while the small
scale maps are shown exactly as returned by the network.

For all trainings with LS or LS + noise inputs, the generated small scales retain
trace of the large ones, in variable measure according to the value of the SNR. This
characteristic was present also in the real SS maps in total intensity, so we can assume
that it is a realistic feature of SS maps. This means that the neural network learnt
correctly the mapping from large to small scales. However, there might be cases
where it is preferable to have small scale patches with no trace of the large ones.
Then, it might be better to use the noise trained DCGAN instead, which gives away
one of the realistic features that the NN is able to imitate, in favour of a more general
applicability. An example of such a situation will be described in the next chapter
when discussing the iteration of the DCGAN approach.

A problem when working with DCGANs is that the output is returned rescaled
in an interval determined by the image set of the activation function and therefore
requires a renormalization to the correct scale. In the case of DCGAN training for
polarization maps, the only reference for the correct amplitude of the field in the
SS patches are the Gaussian SS patches, which to first order have the correct ampli-
tude, even though having a different statistics. The rescaling was performed in the
following way:

1. Each of the 174 SS patches m̃gen
SS resulting as output from one of the trained

DCGANs was paired with a Gaussian field SS patch m̃gauss
SS .
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FIGURE 4.5: Comparison of small scale patches generated by the DCGANs with
different trainings and the Gaussian small scale patches. The first line shows the
LS patch used as input, from the second to the fifth line, there are, in order, the SS
output patches for the LS training, the LS + noise training (SNR from 10 to 1) and
the noise training. The last line shows the Gaussian patches. The small scales in
each column are the NN outputs corresponding to the input in the first line, apart
for the noise training patches.
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2. The output patch was rescaled so that the average and the STD of the pixels’
values was the same as the average and STD of the Gaussian patch:

m̃gen
SS −→

(︁
m̃gen

SS −
⟨︁
m̃gen

SS

⟩︁)︁
·

STD
(︁
m̃gauss

SS

)︁
STD

(︁
m̃gen

SS

)︁ +
⟨︁
m̃gauss

SS

⟩︁
(4.2)

4.2 Characterization of the Output Maps

4.2.1 Distribution of the STD

Besides looking at Minkowski functionals , an other way to examine the statistics of
the small scale field generated by the DCGAN, is to compute the standard deviation
of the distribution of values for each pixel. In particular, from the 174 generated
SS patches, after rescaling, it is possible to compute a pixelwise STD, i.e. compute
at every pixel coordinates (x, y), x, y = 1, 2, . . . , 320 the standard deviation across
the 174 patches of the values of that pixel. The result is a standard deviation map,
that reveals patterns, variability and average value of the STD of the field. We are
interested in the distribution of the STD, rather than the average value or the STD
itself, because both of them were fixed by the rescaling. In fig. 4.6 one finds the STD
maps for all trainings as well as for the Gaussian field.

FIGURE 4.6: Pixelwise standard deviation maps for each set of output SS patches.
The value represented by a pixel in these maps is the STD of that pixel’s value in
the set of 174 output patches. The first and third lines refer to Q maps, the second
and fourth to U maps.
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training STD’s average value STD’s standard deviation

LS (Q) 0.375 0.045
LS (U) 0.377 0.043
LS (Q) + noise, SNR = 10 0.375 0.044
LS (U) + noise, SNR = 10 0.372 0.059
LS (Q) + noise, SNR = 2 0.376 0.040
LS (U) + noise, SNR = 2 0.379 0.029
LS (Q) + noise, SNR = 1 0.377 0.032
LS (U) + noise, SNR = 1 0.378 0.037
noise 0.378 0.034
Gaussian field 0.378 0.020

TABLE 4.3: Standard Deviation of Pixel Values, averaged over all pixels. The av-
erage and standard deviation of the pixelwise STD are reported for all trainings
and for the Gaussian field case.

A first thing to notice is the presence of border effects in all the cases where LS
patches were used in the input. This is an undesired spurious effect that may be at-
tributed to the decomposition procedure from full sky maps to square patches. Fur-
thermore, the STD maps of the LS and LS + noise trainings reach higher and lower
values than those of the noise training (with the exception of the SNR = 2, U train-
ing, which anyway was not successful, as previously discussed.). The wider range
of STD values may be attributed to the presence of LS imprints in the SS patches
generated from those trainings. In any case, for all the trainings, the STD ranged in a
wider interval compared to the Gaussian patches. The standard deviation computed
over all pixels of the pixelwise standard deviation is indeed lower for the Gaussian
SS patches and is generally higher for the SS patches resulting from trainings with a
high SNR (tab. 4.3).

FIGURE 4.7: Distribution of the values of a randomly selected pixel in the output
SS patches. The figure compares the results from different trainings and from the
Gaussian field case. First column refers to Q maps, second column to U maps.
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In fig. 4.7, there is an example of the distribution of values for a random pixel
over the 174 SS patches. The figure compares the distribution of the same pixel
value for each different training, in both Q an U6. The standard deviations of these
distributions are the values appearing in the maps in 4.6.

4.2.2 Variability of Output Maps as Function of the Noise

When analysing the trainings with noisy inputs, an aspect to look at is how much
the output patches change if the specific noise realization that was used in the input
is changed for another one. For the noise training, this is just the variability of the
SS output patches, since the input consists of noise only, while for the LS + noise
trainings it means to compare the output patches corresponding to inputs with the
same LS patch, but different noise realizations. It is important that the variability
is sufficient to justify the introduction of noise in the input: if the trained network
collapsed all inputs to the same output the introduction of noise would have failed
its purpose.

In rows two to four, fig. 4.8 shows three examples of SS output patches for each
trained network (only for the Q maps, U maps would show similar results). The
first line displays the input LS patch given to the network in each case. The last
line presents a standard deviation map, in the fashion of those in fig. 4.6, where the
value of each pixel is the STD of the pixel’s value in 100 output SS maps generated
by the same LS input with 100 different noise realizations. It appears that, all the
output patches present the same trace of large scales, if they were present in the in-
put, but completely different small scales, as was hoped. The standard deviation
of the pixel values is higher in the presence of a large scale structure, because the
pixel values undergo higher oscillations in the proximity of a structure. This kind
of inhomogeneity fades as the SNR of the input patch decreases, until disappear-
ing in the noise training case. Fig. 4.9 reports the Minkowski functionals, as usual
with average ± 1 STD, corresponding to the shown patches. The plots show more
variability for functionals with a higher index, which is consistent with the fact that
the higher the index the more complex the shape of the functional. In any case, the
functionals appear as they would if the corresponding images were samples from
the same distribution.

4.3 Power Spectra

The last analysis performed on the generated SS patches was the computation of
their power spectra (defined in section 1.2). A generic LS patch (patch n. 98, with
sky longitude and latitude (18◦, 18◦)) was picked as an example and the power spec-
trum was computed on the corresponding outputs returned by every trained net-
work. The power spectra were computed using the NaMaster code, implemented in
Python by the pymaster7 library. This code uses the pseudo-Cℓ formalism (Alonso
et al., 2019) to calculate the angular power spectrum of functions defined only on
a limited portion of the sphere, and in particular in the flat-sky limit, which is the
case relevant to the 20◦ × 20◦ square patches. Since the spectra are calculated only
on a limited portion of the sky, their estimates for ℓs corresponding to scales greater

6Note that for the cases of noise training and Gaussian field the distributions in the Q and U
columns are equivalent.

7Pymaster documentation: https://namaster.readthedocs.io/en/latest/#.

https://namaster.readthedocs.io/en/latest/#
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FIGURE 4.8: Three examples of SS output patches for the DCGAN trained with
noisy inputs. The first line displays in the LS input patches normalized between
-1 and +1. The second, third and fourth lines contain the output SS patches before
any rescaling. In the last line there are STD maps, computed over 100 different
realizations of small scale output maps above. The SNR decreases from left to
right.
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FIGURE 4.9: Plot of Minkowski functionals that show the variability of the output
of the DCGANs trained with noise in the input. The green plots refer to the LS +
noise training (from high to low SNR), the red plots are for the noise training.

than the side of the patches are not accurate. Indeed the power contained in low fre-
quency modes might be incorrectly distributed among different modes, or between
E and B modes. To limit this spurious mode mixing effects, an apodization window
is applied to each map when computing the spectrum. The window must be contin-
uous, smooth and go from values of 0 on the border to values of 1 at the center of
the image. The one used here (fig. 4.10) follows the function:

Wapo(x) =

{︄
1
2

(︂
1 − cos

(︂
π
√︂

1−cos η
1−cos η0

)︂)︂
if x < 1

1 otherwise
(4.3)

where η is the angular separation between a point and the border of the window
and η0 = 2◦ a constant. The power spectra CEE

ℓ and CBB
ℓ were computed in the E-B

decomposition, for values of ℓ in [20, 1020], binned in intervals of ∆ℓ = 40. Fig. 4.11
shows the angular power spectra for SS output patches, corresponding to the LS
input patch 98, after renormalization to the Gaussian mean and STD. The blue line
represents the Gaussian field small scales, the yellow line the small scales generated
from the LS training, the green line the ones generated from the LS + noise training
and the red line those from the noise training. To simplify the reading of the plot,
of all the LS + noise training cases, only the one with SNR = 1 is shown. Anyways,
the trainings with different SNRs yielded results very similar to the SNR = 1 case, so
from now on only the latter will be considered in the analysis. For the trainings with
noise in the input as well as for the Gaussian patches, the power spectra shown in
the diagram is the average spectra over 100 different realizations of the SS patches.
For the LS + noise training, this meant that 100 different SS patches were generated
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FIGURE 4.10: Apodization window used for the computation of the angular
power spectra of flat square patches. Krachmalnicoff and Puglisi, 2021

starting from an input having the same LS + patches, but different noise realizations.
For the noise training and for the Gaussian patches, this only meant generating 100
SS patches from 100 different noise inputs or picking 100 different realizations of
the Gaussian field. The dotted lines represent the average power spectra, while the
colored bands cover the area enclosed between 1 STD above or below the average.
For the LS training case, the dotted line represents just the power spectra of that
particular SS patch.

The interesting point here is to observe the trend of the STDs and to check how
close the averaged spectra are to the spectra of the LS training patch. A first good
results is the fact that all the spectra of the generated patches are very similar to
each other, even overlapping in various points. This means that even if the DC-
GAN was trained using different inputs, the network is able to produce very similar
output distributions. Instead, compared to the Gaussian field patches, the gener-
ated patches have more power in the small scales. Looking more closely, the spectra
of the LS training falls almost everywhere within 1 STD from the LS + noise spectra
and within 1 STD from the spectra of the noise training for roughly half of the points.
This means that the LS + noise trainings produce SS patches with a spectrum that
has a underlying distribution compatible with the distribution of the spectra of the
patches from the LS training. Therefore we can use it effectively to estimate the STD
of the power spectra of the DCGAN-generated small scales. The STDs of the power
spectra are shown in fig. 4.12. For the LS + noise trainings, the STD is lower in the

FIGURE 4.11: Angular power spectra of E and B modes for one small scale patch.
The blue line is for the Gaussian field, the yellow one for the LS training, the green
one for LS + noise training and the red one for the noise training. In all cases
except the LS training, the plotted line shows the average spectra and STD of 100
different realizations.
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FIGURE 4.12: Standard deviation of the angular power spectra of E and B modes
for one small scale patch. The blue line is for the Gaussian field, the green one for
LS + noise training and the red one for the noise training. For all cases, the STD
was computed over 100 different realizations.

large scales, which is reasonable since the patches generated from those trainings
bare trace of the input large scales. Both the noise and the LS + noise trainings have
a higher STD than the Gaussian field in the small cases, which means that the neural
network generates small scales with a wider variability.

4.3.1 Refine the rescaling

A refinement of the rescaling of the SS patches can be done using the power spec-
tra. The point of this second renormalization is to obtain generated SS patches with
power spectra as similar possible to that of the Gaussian field SS, which is the correct
power spectra for the emission maps. This is achieved by the rescaling:

m̃Q/U
SS −→

(︂
m̃Q/U

SS −
⟨︂

m̃Q/U
SS

⟩︂)︂
·

⌜⃓⃓⃓
⎷ ⟨︁

Cgauss
ℓ

⟩︁
ℓ>160⟨︂

CQ/U
ℓ

⟩︂
ℓ>160

+
⟨︁
m̃gauss

SS

⟩︁
(4.4)

where the factor
√︂⟨︁

Cgauss
ℓ

⟩︁
ℓ>160/

√︃⟨︂
CQ/U
ℓ

⟩︂
ℓ>160

is the square root of the ratio be-

tween the power spectra of the Gaussian patches and that of the NN generated
patches, averaged over all ℓs greater than 160 (corresponding to ∼ 1◦), to account
only for the small scales. Note that the power spectra here are not computed in the
E-B decomposition, but singularly on the Q and U fields.

4.3.2 Reintroducing Large Scales

After the creation of small scale patches and their renormalization, the next step is to
insert them into the large scale maps. This is done by multiplying each SS patch m̃SS
with the corresponding LS patch MLS, in the correct units, to get a map with both
large scales (80 arcminutes) and small scales (12 arcminutes):

MQ/U = MQ/U
LS · m̃Q/U

SS (4.5)

Example results are shown in fig. 4.13. The first two lines display results for the
example patch n.98 (sky coordinates: (18◦, 18◦)), the second line for patch n.139 (sky
coordinates: (36◦, 54◦)). The first and the third row refer to Q maps, the second and
the fourth row to U maps. In the first column there are large scale input maps at 80’.



64 Chapter 4. Implementing Stochasticity

FIGURE 4.13: Example of LS + SS Patches. The first two lines show results for the
example patch n.98, sky coordinates: (18◦, 18◦), the second line for patch n.139,
sky coordinates: 36◦, 54◦.

From the second to the last column there are large scale plus small scale maps, up
to 12’, for all different cases of small scales. These patches MQ/U with LS + SS are
ready to be used to reconstruct full sky maps up to a resolution of 12 arcminutes.

The angular power spectra of the LS + SS patches can be computed in the same
way as was done for the SS patches. Fig. 4.14, shows the spectra of the example
patch (n.98). Again, the blue line is for the Gaussian field, the yellow one for the LS
training, the green one for LS + noise training and the red one for the noise training.
In all cases except the LS training, the plotted lines show the average spectra of 100

FIGURE 4.14: Angular power spectra of E and B modes for one large scale patch.
The blue line is for the Gaussian field, the yellow one for the LS training, the green
one for LS + noise training, the red one for the noise training and the black one for
the original large scale maps. In all cases except the LS training and the LS maps,
the plotted lines show the average spectra and STD of 100 different realizations.
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different realizations and the colored bands are the area between 1 STD above or
below the average. As before, only the case SNR = 1, is shown for the LS + noise
training, because the results for the other cases were very similar.

All the small scale spectra are very similar to each other, especially for ℓ > 200,
were they almost coincide. So, this means that, for any training, the DCGAN is able
to enhance the resolution of large scale maps by adding non-Gaussian small scales,
that, after an appropriate rescaling, have the expected power spectrum (i.e. that of
the Gaussian field realization).
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Chapter 5

Iterating to 3 arcminutes

The DCGAN approach for modeling the small scale features of the thermal dust
emission maps, allows one to generate features up a scale of 12 arcminutes. This
resolution is set by the resolution of the total intensity SS patches in the training set,
which in turn was determined by the maximum resolution present in the total inten-
sity full sky maps for a sufficiently large portion of the sky. In the spherical harmon-
ics multipole expansion (see section 1.2), the 1D angular scale θ = 12′ corresponds
to the multipole ℓ = π/θ = 900. Post-Planck CMB experiments currently under
preparation, such as the Simons Observatory, LiteBIRD and Stage-4 (see section 1.4),
aim at measuring the polarized power spectrum at multipoles corresponding to the
arcminute scales.

It would be helpful to have models of the galactic emission that provide maps
with resolution up to a few arcminutes and a possible way to achieve this is by
repeating the DCGAN approach. The idea of iterating the creation of smaller scales
relies on the fact that the neural network is not sensitive to the physical scale of the
smallest features in an image (i.e. the resolution), but only to the ratio (R = L/r)
between the angular size of the side of the patch (L) and the resolution (r). So by
resizing correctly the 12’-scale patches, one can use them again, as an input to the
neural network. The trained NNs were able to upscale the maps’ resolution from
80’ to 12’, which means a decrease of the resolved scale by a factor of f = 0.15.
Applying it again to 12’-scale maps would mean being able to generate 1.8’-scale
maps. Actually, as it will be explained in this chapter, the iteration of the resolution
upscaling requires a few technical steps, during which part of the resolution is lost,
so that, in the end, the final resolution that can be reached is 3 arcminutes.

Applying the DCGAN to the emission maps for a second time, is possible if
we assume that the structures at 12’ and the ones at 3’ have similar characteristics.
Saying that the structures at different scales share the same statistics means that the
maps of thermal dust emission have a fractal structure. This is reasonable because
the angular power spectrum of the emission, which is the Fourier transform of the
two-point correlation function, follows the same power law down to the arcminute
scale, so one can assume that the same happens for the higher n-point correlation
functions which define the statistics of the field. In any case this is the best guess
that we are able to make with the available data.

There are different possibilities for iterating the SS generating process. First of
all, there are five available networks (one for the LS training, three for the LS + noise
trainings and one for the noise training). However, to use the networks with large
scales in the input, we need that the fractal assumption holds, not only between
scales at 12’ and scales at 3’, but also between the large scales at 80’ and the scale
of the new patches that will be used as input to the NN. This is important because
the networks are specifically trained to recognize the exact features of the patches at
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80’ and translate them into the SS features at 12’. So if a different image is given as
input to the NN, the latter will not be able to return a correct output. Therefore, the
simplest way to introduce even smaller scales in the emission maps is by using the
noise trained DCGAN which doesn’t require this additional assumption.

This chapter will describe the steps required to iterate the process of small scales
creation and analyze the results obtained.

5.1 Procedure for iterating the DCGAN Approach

Up to now, to pass from low resolution to high resolution maps, the DCGAN took
input patches with:

side length Lin = 20◦ = 1200′

resolution rin = 80′

pixels per side nin = 320 px

and the output patches were returned with:

side length Lout = 20◦ = 1200′

resolution rout = 12′

pixels per side nout = 320 px

For the input maps, the ratio between side length and resolution is:

Rin = Lin/rin = 15

while for the output maps it is:

Rout = Lout/rout = 100

To use again the output patches as inputs for the NN, they must be divided into
smaller sub-patches, with a side length such that the new ratio R = L/r is equal to
Rin, because that is an information that the network learned to recognize. The side
length L of the sub-patches would be:

L = Rin · rout = 180′

which is approximately 6.67 time smaller than the side Lout. However, dividing
the side of the patch by a non-integer number would make the use of DCGANs
very complicated, because it would result in the use of non-square patches. So the
most convenient way to make sub-patches is to divide the side by a number, smaller
than 6.67, that is a divisor of the number of pixels per side of the output map, i.e.
n = 320px = 26 · 5 px. The patches were divided into 4 × 4 = 16 sub-patches,
which allows one to generate 3’ scales (as explained below). An other choice could
have been to divide them into 5× 5 sub-patches. With this narrower subdivision we
would have reached a resolution of 2.6’, but the 13% increase in resolution would
come at a cost of an increase of computational time of least 50% and so the option
was ruled out for the time being. Repeating the work with more and smaller sub-
patches, to create even smaller scales, remains a possibility for future work.

Sub-patches with side length L = 5◦, resolution r = 12′ and pixels per side
n = 80 px, are not ready yet to be fed to the DCGAN. First of all, the pixels per side of
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the new input patches must be n = 320 px, because the DCGAN architecture is built
for an input of that size, so the sub-patches need a (4×) upscale. Secondly, the ratio
R must be equal to Rin, so the sub-patches must be smoothed down to a resolution
r = L/Rin = 5◦/15 = 20′. Since we are using the noise trained DCGAN, the sub-
patches that are going to be used as the new large scale patches are constructed from
the 174 Q and U patches MQ/U

(noise), that have features up to 12’, generated by the noise
trained DCGAN (for an example, see the last column of fig. 4.13).

The sequence of operations required to iterate the production of small scales
can be divided into two main steps: creating the new input patches at 20’ from the
MQ/U

(noise) patches and adding to them the output patches at 3’. Both steps require vari-
ous intermediate operations in which the side length, resolution or pixels per side are
changed. So in the following, for the sake of clarity, a set of patches will be denoted
by M(X′, Y◦, Zpx), where the triplet of numbers (X, Y, Z) indicates respectively the
resolution (in arcminutes), the side length (in degrees) and the pixels per side (in
px). For example, the patches MQ/U

(noise) will be denoted by MQ/U(12′, 20◦, 320px).
Let’s now see all these steps in detail:

1. Upsampling. The DCGAN’s architecture is set so that the number of pixels per
side for input/output patches is n = 320. So, if the patches MQ/U(12′, 20◦, 320px)
are going to be divided into sub-patches with side length 4 times smaller, the
number of pixels per side must be multiplied by 4. Note that even if we are in-
creasing the number of pixels we are not increasing the resolution of the map,
which means we don’t want to introduce new information. So the upscaling
is performed with no interpolation method, by just repeating the pixel values
in the corresponding 4 × 4 pixels of the upsampled patch. After this step we
obtain upsampled maps MQ/U(12′, 20◦, 1280px).

2. Smoothing. Since the patches MQ/U(12′, 20◦, 1280px) are going to be divided
into sub-patches with side length L = 5◦, in order to have the same resolution-
to-side-length ratio R = 15 of the original LS patches at 80’, their resolution
must be smoothed to r = 20′. The chosen smoothing method is Gaussian
blur, i.e. performing a discrete convolution between the image and a 2D Gaus-
sian. The method is implemented using the ndimage.gaussian_filter1 func-
tion from the Python library Scipy, which takes as input the image matrix and
the size of the Gaussian sigma in pixel units. To smooth a map with the ef-
fective beam’s FWHM = 12’ into a map with FWHM = 20’, the map must be
convoluted with a (Gaussian) beam of FWHM =

√︁
(20′)2 − (12′)2 = 16’ (see

appendix A). For a Gaussian, a FWHM= 16′ corresponds to σ = 6.79′, which
in our case amounts to σ = 7.24 px on the pixelized image. After smooth-
ing, we obtain patches MQ/U(20′, 20◦, 1280px). An example of the effect of the
smoothing filter is shown in fig. 5.1.

3. Division in sub-patches. The patches MQ/U(20′, 20◦, 1280px) must now be di-
vided into sub-patches with a side length 4 times smaller. The original patches
could be fully covered by a tessellation of 4 × 4 = 16 sub-patches. However,
after the introduction of the 3’ scales, border effects would appear at the edge
of each sub-patch. To avoid this, sub-patches could be created so that each
of them overlaps for half of its side length with the sub-patches on the left,

1Scipy Gaussian filter documentation: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.ndimage.gaussian_filter.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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right, top and bottom. In this way, each portion of the original patch is cov-
ered by 4 different sub-patches, except for the portions close to the side, which
are covered only by 2 sub-patches, and the portions at the angles, which are
covered by only 1 sub-patch. With this method, after the introduction of the
3’ scales, the sub-patches can be apodized back together. With this kind of
overlap, seven sub-patches per side are needed, for a total of 7 × 7 = 49 sub-
patches. So for each of the 174 patches MQ/U(20′, 20◦, 1280px), 49 sub-patches
MQ/U(20′, 5◦, 320px) are created.

4. Generating and adding 3’ scale patches. At this point, for both Q and U maps,
there are a total of 174 × 49 = 8526 sub-patches MQ/U(20′, 5◦, 320px) that take
up the role of the MQ/U

LS patches at 80’ that were used as input to the DCGAN
in the previous chapter. The noise trained DCGAN generates output patches
starting only from a noise matrix, so it is sufficient to feed 8526 different noise
realizations to the DCGAN to get the same number of 3 arcminutes output
patches. These patches take up the role of the m̃SS patches at 12’ generated in
the previous chapter. To add the 3’ features in the 20’ sub-patches, each sub-
patch MQ/U

LS(20′) is multiplied by one output patch m̃Q/U
SS(3′). Note that, before the

multiplication, the patches with 3’ features have been renormalized with the
two-step rescaling described in sections 4.1 and 4.3.1. Resulting from this step
are maps MQ/U(3′, 5◦, 320px), containing both 20’ and 3’ features and which
are the equivalent of the maps MQ/U with 80’ + 12’ features obtained in the
previous chapter. An example of the addition of 3’ scales to the 20’ scale is
shown in fig. 5.2 for Q maps (U maps are similar), where the effect of DCGAN
generated small scales is compared to that of Gaussian small scales.

5. Recomposing the full patches. The last step consists in recomposing together
the sub-patches with side length of 5◦ into patches with 20◦ side length. Blend-
ing the sub-patches together is done by applying to them different apodization
masks, depending on the position taken by the sub-patch on the full patch, e.g.
center patch, side patch, angle patch (all the kinds of masks are shown in fig.
5.5a). It is important that the apodization masks are smooth, to avoid border
effects, and that they sum to 1 when they overlap with each other in any point
of the recomposed patch. The profile of the apodization masks follows the
function:

Wapo(x) = 1 − cos2(x) (5.1)

on every side where the corresponding patch overlaps with another patch,
with x being the distance from the border of the mask. After the recomposition
we obtain the final patches with enhanced resolution MQ/U(3′, 20◦, 1280px).
The reason for reconstructing 20◦× 20◦ patches, rather than keeping the 5◦× 5◦

ones, is that in this way, for building full sky maps with 3’ features, the same
code for the 12’ full sky maps can be used (see section 6.1).

The above points are briefly listed in tab. 5.1 with the characteristics of the patches
resulting from each step.

5.1.1 Checks on the Procedure

To make sure that the above procedure was producing maps with the correct res-
olution, without altering the statistics of the structures, a couple of tests were per-
formed.
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FIGURE 5.1: Four examples of the effect of the Gaussian filter, applied on Q and
U maps. The filter performs a convolution between the image and a Gaussian
beam with a chosen σ in pixel units. The first line displays maps at 12’ resolution,
before the smoothing, while the second line shows the same maps at 20’, after the
smoothing.

FIGURE 5.2: Example, for Q maps, of the addition of small scales (3’) to large scales
(20’) maps. The LS patches in the left column are multiplied for the SS patches in
the middle column to produce the LS + SS patches in the right column. The figure
shows a comparison between the introduction of DCGAN generated small scales
and Gaussian field small scales.

resolution r side length L pixels per side n

initial patches 12’ 20◦ 320 px
upsampling 12’ 20◦ 1280 px
smoothing 20’ 20◦ 1280 px
division in sub-patches 20’ 5◦ 320 px
adding 3’scale patches 3’ 5◦ 320 px
recompose full patches 3’ 20◦ 1280 px

TABLE 5.1: Steps for iterating the DCGAN approach to reach the 3 arcminutes
resolution. The last three columns refer to the characteristics of the Q-U patches
after each step.
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First, the resolution of an example patch was checked before and after the smooth-
ing, by computing the angular power spectra. Fig. 5.3 shows E and B power spectra
for patch n. 98 (sky coordinates (18◦, 18◦)) before smoothing (blue line) and after
(red line). The smoothed one, of course, drops faster for smaller scales (higher mul-

FIGURE 5.3: Angular power spectra of an example patch before (blue) and after
(red) the smoothing that reduced its resolution from 12’ to 20’.

tipoles). Then the spectra were computed again, but this time correcting for the fact
that the images were convoluted with a Gaussian beam with FWHM equal to 12’
for the pre-smoothing map and 20’ for the post-smoothing map2. The results are
shown in fig. 5.4. The two power spectra overlap exactly, meaning that the maps’
resolutions were actually 12’ and 20’.

FIGURE 5.4: Angular power spectra, corrected for beams of 12’ and 20’, of an ex-
ample patch before (blue) and after (red) the smoothing that reduced its resolution
from 12’ to 20’.

Another test was done to ensure that the apodization masks were actually weight-
ing correctly the patches to which they were applied. Nine of them were summed
together, arranged 3 × 3, with an overlap of half of the side of a mask (see fig. 5.5).
The sum of the masks should be equal to 1 everywhere. The result is presented in
fig. 5.5b. The image shows some patterns, but the minimum and maximum val-
ues deviate from the unit at the 16th decimal cifre, which is a completely neglectable
error.

2Accounting for an instrumental beam is an option already present in the NaMaster functions.
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(A) . (B) .

FIGURE 5.5: Apodization masks for patch reconstruction. Figure (A) shows all the
different kinds of masks: the ones for sub-patches in the center, on the side and on
an angle of the full patch. The color white corresponds to a value of 1, black to
0. In figure (B), the patches on the left are summed together, in the same position,
with an overlap of half of the side of a mask.

5.2 Results of the Iteration

The maps resulting from the iteration of the DCGAN approach for creating small
scales are shown in fig. 5.6. The figure presents a comparison, for Q and U maps,
of an example patch (n. 83, sky coordinates (108◦, 0◦) at different resolutions. In
the first columns there are the initial large scale maps at 80’, in the third one there
are the maps with resolution up to 12’ built with small scales generated by the noise
trained network, the second column shows the smoothing with a Gaussian beam of
the maps in the third column down to 20’, while in the last column there are the maps
with features up to 3’ generated by the noise trained network iterated a second time.
A zoomed detail of the maps in fig. 5.6 is shown in fig. 5.7. To focus the attention
on the small scales it is convenient to plot the maps at 20’, 12’ and 3’, divided by the
large scale maps at 80’. This is done in fig. 5.8, where the last three columns show,
in order, the 20’ maps, the 12’ maps and the 3’ maps. The first column shows, as a
comparison, the Gaussian field maps at 3’, also divided by the 80’ maps.

An issue in these last maps is the presence of points with values completely out
of scale, noticeable in the plots as darker lines. They appear because of the division
by the large scales patches, which in some points have values very close to 0. The
presence of these points and their arrangement in lines along the 0 value level set
of the 80’ maps, spoil the computation of Minkowski functionals, so they cannot be
used to analyse the statistics of the patches. In any case the different statistic be-
tween 3’ Gaussian field maps and 3’ small scales generated by the NN, is intuitively
noticeable from the plotted maps. Besides, the small scale patches at 3’ are gener-
ated in the exact same way as the small scales generated at 12’ so they yield the same
non-Gaussian statistics.

It is also interesting to compare the angular power spectrum of the maps at dif-
ferent scales. In fig. 5.9, one can find the spectra in E and B for the example patch,
at resolutions of 80’, 20’, 12’ and 3’. The spectra of all the maps appear to follow
the same power law function, up to the scale corresponding to their effective beam.
This is a good result, because it means that, also when applied the second time to
reach scales of 3’, the trained DCGAN is able to generate features of the thermal dust
emission maps with non-Gaussianities and with the correct power spectra.
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FIGURE 5.6: Comparison between Q-U maps at 80’, 20’, 12’ and 3’. Example patch
n.83, sky coordinates (108◦, 0◦). In the first column, the original GNILC maps
smoothed at 80’. The small scales in the 12’ maps (third column) and in the 3’
maps (fourth column) are generated by the noise trained DCGAN. The maps at
20’ (second column) are created by a Gaussian smoothing of the maps at 12’.

FIGURE 5.7: Detail from maps in fig. 5.6 (4 times zoom).

FIGURE 5.8: Comparison between Q-U maps at 20’, 12’, 3’ and 3’ Gaussian maps,
all divided by the corresponding maps at 80’. Example patch n.83, sky coordinates
(108◦, 0◦).
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FIGURE 5.9: Angular power spectra in E and B for Q and U maps at 80’, 20’, 12’
and 3’ (example patch).
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Chapter 6

Building Full Sky Maps

The two main goals of the thesis were to create full sky polarization maps of the
thermal dust emission with features at 12’ generated by a neural network that had a
stochastic variability and to iterate the method to generate also scales at 3’. So after
creating and analysing the 20◦ × 20◦ patches at 12’ and 3’, the last step is to compose
them back together to form full sky maps.

The issue with the full sky recomposition regards the overlapping areas between
the patches, which are of the scale of 2◦. The problem is that the neural network
generates small scales using only the information contained in one patch, with no
knowledge of the content of the neighboring patches. Therefore the small scales
generated close to the border of a patch don’t have any continuity with those of
the adjacent patches. So, before composing the patches together, an apodization
window like the one in eq. 4.3 and fig. 4.10 is applied to them so that the features
at the edges of the patches merge smoothly into one another. However, averaging
the generated features together causes a loss in the small scales (high multipoles)
angular power spectra, expecially in the points were more patches overlap with each
other.

This chapter will explain how the recomposition is done and analyze the charac-
teristics of the full sky maps.

6.1 Details of the Reprojection Procedure

For all the operations required to pass from flat sky patches to a full sky map, I
used the reprojection script developed by Giuseppe Puglisi for the ForSE package
(Krachmalnicoff and Puglisi, 2021). Here I will summarize the functioning of the
reprojection code used for converting an HEALPix fullsky map to an array of flat,
square patches of 20◦ × 20◦ and viceversa.

The HEALPix1 (Hierarchical Equal Area isoLatitude Pixelation) subdivision of
the sphere consists in a tessellation of the sphere with 12 curvilinear quadrilaterals
of the same area (see fig. 6.1 as a reference). The number of pixels can be increased by
powers of 4, by dividing in 2 the side of each pixel. So the resolution of a HEALPix
map depends on the number of pixels per side in one of the 12 basic quadrilaterals
(which is always a power of 2).

To convert full sky maps to square patches, the code uses functions from the
Healpy library to project a portion of the HEALPix sphere into square patches that
cover a 20◦× 20◦ area . The projection is done at 174 different locations on the sphere.
The centers of the projected patches are located along circles with the same latitude,

1HEALPix documentation: https://healpix.sourceforge.io/

https://healpix.sourceforge.io/
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FIGURE 6.1: HEALPix Tesselation Scheme, example with increasing number of
pixels per side.

18◦ distant from one another. The number of equally spaced patches per circle de-
pends on the latitude (7 patches at the poles, 10 at ±72◦ and 20 at other latitudes),
in a way that the sphere is covered more homogeneously possible while still al-
lowing enough overlap between the patches. So, in regions close to the poles, the
areas where two or more patches overlap are wider and the number of overlapping
patches in one point is higher than in regions close to the equator. This implies
that the smoothing of the small scale features is more pronounced in proximity of
the poles (see 6.2.2). To convert the square patches into full sky maps, the oppo-
site projection is performed, at the same locations, but with the application of the
apodization window, to merge the patches seamlessly.

The patches with 12’ resolution have 320 px per side, while patches with 3’ reso-
lution have 1280 px per side. In the reprojection to full sky HEALPix maps, they are
converted, respectively, in maps with 2048 and 4096 pixels per side. Conventionally,
a feature of a sky map is considered resolved if it is covered by at least 3 pixels in
the map. Therefore, maps with Nside = 2048 px, 4096 px, whose pixels have sizes of
Spx = 1.71′, 0.859′ resolve features up to r = 5.13′, 2.58′, which are resolutions suffi-
cient to conserve all the information contained in the 12’ and 3’ patches respectively.

6.2 Full Sky Maps Results

The results of the full sky recomposition are shown in fig. 6.2. From the top down,
in the first three rows, one finds the original HEALPix Q and U maps with 80’ reso-
lution, the maps with 12’ resolution and small scales generated by the noise trained
network, the maps with 3’ resolution made by the iteration of the DCGAN. To give
more relevance to the small scales and to check the possible presence of border ef-
fects from the patch overlaps, in the last three rows, one can see the subtraction
between high resolution and low resolution maps (in order (12’-80’), (3’-80’) and (3’-
12’)). The introduction of small scales both at 12’ and at 3’ doesn’t change the large
scale features of the emission maps and no border effects are visible in any map. This
means that the apodization maps used to recompose the 20◦ × 20◦ from the 5◦ × 5◦

sub-patches and the mask used to go full sky were apt for the purpose.
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FIGURE 6.2: Full sky maps after the patch recomposition. First column is for Q
maps, second is for U maps. The first three lines display, in order, the maps with
resolutions up to 80’, 12’ and 3’. In the second three lines there are the subtraction
maps (12’-80’), (3’-80’) and (3’-12’).
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6.2.1 Full Sky Maps Power Spectra

Angular power spectra in E and B modes were computed also for the full sky maps,
this time using the sphtfunc.anafast function from the Healpy library. The results
are shown in 6.3 for the power spectra of the Q and U maps at 80’, 12’ and 3’. Note
that the three spectra coincide exactly until the scale of the order of each map’s reso-
lution. This is trivial for the two maps with the lowest resolution, because the large
scales at 80’ are always the same. For the map at 3’, however, attention was paid to
make sure that the 12’ patches from which the 20’ input sub-patches were created
were the same used to build the 12’ full sky map. The small and fast oscillations
of the spectra at low multipoles are a spurious effect due to the particular function
used to compute the spectra. The relevant thing to observe, instead, is that all the
maps have a power spectra that follows the same power law distribution up to the
multipoles corresponding to each map’s resolution scale, i.e. ℓ = 135, 900, 3600.

FIGURE 6.3: Angular power spectra in E and B for Q and U full sky maps at 80’
(blue), 12’ (green) and 3’ (red).

6.2.2 Quantifying the Angular Power Loss

To have a first qualitative idea of how much power is lost in the small scales because
of averaging the overlapping patches, one can compare the zoomed full sky maps at
different resolutions for a window positioned on one pole and for a window on the
equator. The comparison is shown in fig. 6.4. It is evident that the small scales at 12’,
and especially those at 3’, are sharper at the equator rather than at the pole.

To estimate the power loss more quantitatively, a possible way is to re-project
again the full sky maps into square patches and then compare the angular power
spectra of the original square patches and that of the newly re-projected ones. One
can define the quantity r±b(ℓ) as the ratio between the Cℓ coefficients for the original
patches and the re-projected ones, averaged among all patches at the same latitude
±b:

r±b(ℓ) :=

⟨︄
C(orig)
±b,l (ℓ)

C(repr)
±b,l (ℓ)

⟩︄
l

(6.1)

Values of r±b(ℓ) greater than 1 indicate the presence of a loss in power. The ratio is
computed as a function of ℓ to see at what scales the loss is greater and as a function
of b to determine at which latitudes the effect becomes important, since the overlap
area and the number of the overlapping patches grow with increasing |b|. The values
of the ratio r±b(ℓ), for E and B modes, are plotted in fig. 6.5 for the patches with 3
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FIGURE 6.4: Comparison between zoomed portions of Q full sky maps positioned
one at a pole and the other at the equator for maps with 80’, 12’ and 3’ resolutions.

arcminutes resolution. As expected, r±b(ℓ) increases with increasing values of the
latitude, as well as with higher multipoles, reaching a plateau for all latitudes around
ℓ ∼ 900 (θ ∼ 12′). However it remains below the value of 2 for all latitudes, except
for the patches at the poles.

FIGURE 6.5: Ratio between the angular power spectra of the square patches at
3’ resolution, before and after the full sky reprojection. The ratio quantifies the
power lost in the reprojection process and it is shown as function of the multipoles
for different values of galactic latitude.
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Conclusions

The quest for detecting primordial B-modes and measuring the tensor-to-scalar ratio
of the primordial gravitational waves predicted by inflation requires precise mea-
surements and realistic modeling of the CMB foregrounds. Primordial B-modes are
contaminated by B-modes produced by lensing, which peak around small angular
scales at ℓ ∼ 1000. Algorithms that estimate the lensing potential from CMB sig-
nal were developed with the purpose of performing delensing and cleaning the B-
modes signal. For calibration they require accurate models of the CMB foregrounds,
in particular of the galactic emission.

With this thesis I present a method for introducing variability in the galactic fore-
ground model ForSE, based on a GAN network, which is able to produce an output
map with non-Gaussianities at a resolution of 12 arcminutes, starting from an input
map with resolution of 80’ arcminutes. This was achieved by adding noise to the in-
put square maps that were used during training and to the input patches on which
the trained network was applied. The introduction of noise generated instability in
the network training and increased the number of iterations required to reach con-
vergence. However, the similarity between the NN-generated output maps and the
small scale maps used as a training set was still satisfactory for all training cases,
with the best results obtained for low levels of noise. Anyway, even the trainings
performed with high SNRs or with noise input only, produced output maps with
small scales containing non-Gaussianities. Another result obtained by this work is
the successful iteration of the procedure for creating small scale feature maps, to
build foreground maps with the even higher resolution of 3’ arcminutes. Reaching
such a resolution is relevant because the target resolution of the next CMB experi-
ments, that are currently under preparation, is around the order of the arcminutes.
The small scale square 20◦ × 20◦ maps at 12’ and 3’ returned by the DCGAN were
rescaled to the correct physical amplitude and then combined to form full sky maps
in the HEALPix pixelation scheme.

Further improvements could be made in the future to extend the scope of this
work. For example, the iteration of the algorithm was conducted using the network
trained with noise only input, but the procedure is set up so that one can try to reach
the same result with a GAN trained with large scales in the input. Also, having
more computational power or longer computational time available, one could repeat
the iterative procedure, but dividing the 12’ patches in 5 × 5 sub-patches, rather
than 4 × 4 sub-patches, so to reach a resolution of 2.6’ instead of 3’. Furthermore,
to better characterize the non-Gaussianities in the small scale maps, a useful thing
would be to implement a code to compute the bispectrum or higher order correlation
functions, to fully characterize the statistics of the generated small scale features.
Lastly, issue that remains open is how to compensate for the angular power lost in
the reprojection procedure, which was significant at high latitudes.

In future work, the full sky maps at 3’, produced with the method here described,
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will be used as foreground models to test algorithms for estimating the weak lens-
ing potential, in the prospect of performing delensing on CMB maps. The lensing
reconstruction algorithms are sensitive to non-Gaussianities in the polarized emis-
sion, since this is characteristic of lensing B-modes. At the moment, the experimental
foreground maps are not available with a resolution up to the arcminute scale and
the current foreground models do not include non-Gaussianities at the small scales,
even though it is expected that the real emission has a non-Gaussian statistics at all
scales. Therefore it is not known if the presence of non-Gaussianities from the fore-
ground contaminants might affect the estimate of the lensing potential and introduce
a bias in the delensing procedure and so a bias on the estimate of the tensor-to-scalar
ratio r. Hopefully the maps produced in this work might help to clarify whether the
lensing algorithms are affected by foreground non-Gaussianities at small scales, so
that in case they can be re-calibrated.
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Appendix

A Gaussian Smoothing

Saying that a map has an effective beam with σ = σa is equivalent to saying that
the map, with virtually infinite resolution, is convoluted with a Gaussian window
function, with σ = σa. In the harmonic domain, the convolution of two functions
becomes the product of the two functions, and a Gaussian function with σ = σa be-
comes a Gaussian function with σ = 1

σa
. In particular, in the convolution with the

Gaussian beam, the coefficients aℓm of the harmonic expansion of the function rep-
resenting the map with infinite resolution get multiplied by a factor e−ℓ(ℓ+1)σ2

. To to
turn a map with effective beam with σa into a map with effective beam with σb > σa,

one has to convolute the initial map with a Gaussian beam with σc =
√︂

σ2
b − σ2

a :

aℓme−ℓ(ℓ+1)σ2
a e−ℓ(ℓ+1)σ2

c = aℓme−ℓ(ℓ+1)(σ2
a+σ2

b−σ2
a ) = aℓme−ℓ(ℓ+1)σ2

b (A.1)

Note that both the FWHM and the σ can be used to determine the width of the
Gaussian beam, and since they are proportional to each other, under the relation:

FWHM = 2
√︁

2 log 2 σ (A.2)

working with one or the other is completely equivalent.
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