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Abstract

In this work I will present and describe de Sitter space. I will start
with a brief historic introduction, to motivate the importance that this
solution of Einstein’s equations had in the discussion about cosmological
models and the issue concerning the cosmological constant and inflation.
Following, I will give a definition of the space and discuss different sets
of coordinates that can be used to describe it. Then I will move on
to draw Penrose diagrams to describe its causal structure and, finally,
I will show by direct calculations that this space is actually a solution
to Einstein’s field equations. In this discussion I will always refer to
the four-dimensional dS space of signature (1,3), for its relation to the
four-dimensional spacetime that we know; however, many results can be
extended to higher dimensions.
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1 From Einstein’s equations to inflation: de Sit-
ter popping up here and there

In 1916 Einstein published the general theory of relativity[l], which describes
gravitation as a result of the geometric structure of spacetime: the motion of
free objects is determined by the metric of spacetime which, in turn, is deter-
mined by the distribution of matter and energy through the universe. This last
assumption is put into mathematical terms by Einstein’s field equations:

1
G =R, — §ng =8nGT,, (1)

that relate the Einstein tensor, which is a function of the metric and its deriva-
tives, to the stress-energy tensor, which represents the density of energy and
matter in space. In particular, all the information about the curvature of space-
time is contained in the Riemann tensor, defined as:

- A A
RZO’V - 60F5u - avrgu + Fg)\ruu - FII/))\FUM (2)
where the Christoffel symbols are built from the metric in the following way:
1
FZ‘U = 59’” (0p9oy + O5Gyp — O4Gpo) (3)

The Ricci tensor is obtained by contracting the Riemann tensor on the first and
third index:

R = Rp,, (4)
while if we contract it again we obtain the Ricci scalar:

R=R: (5)
Any possible spacetime that general relativity allows to exist must have a
metric g, such that eq. (1) is satisfied for some 7}, *.
1.1 From a static to an expanding universe

One year later, Einstein tried to find a static solution to the equations[Q], to
describe the large scale structure of the universe, which he believed to be static
as well. The simplest way to do this was to add a free constant parameter A in
eq. (1), which we call cosmological constant:

1
R, — iRgW + Agu = 87GT),, (6)

This equation allows a solution with 7),, # 0, called Einstein static universe,
which is a spacetime with the topology of R x $% and has metric:

ds® = —dt* + dx* + sin® x [d6® + sin® 0 d¢? (7)

n the following discussion, for the sake of simplicity and readability, I will always use
units in which ¢ = 1 and omit all the factors c.



We can model the content of matter and energy of the universe as a perfect
fluid, so that:

jj;uj = (p +p) UHUIJ +pgul/ (8)
where p is the energy density, p the pressure and U,, the 4-velocity of the fluid?.

Then for A > 0, the field equations can be solved for p < 0. Einstein static
universe is a solution for:

p=0 9)

A
- 81 (10)

Shortly after, however, Willem de Sitter found a vacuum solution to the field
equations with a coordinate system, static coordinates, in which the metric?:

p

2 r’ 2 2\ 2 25 2
ds :_<1_L2)dt+(1_L2) dr® + r*dw; (11)
is time-independent, thus apparently static3l. Here L is a free constant with
the dimension of a length. In the following sections I will explain its meaning
in the context of the de Sitter space, as the radius of the spatial universe and
its relationship with the cosmological constant A. This metric solved the field
equations for 7}, = 0, challenging the relationship between mass-energy distri-
bution and the geometry of spacetime. However, the curves of constant spatial
coordinates are not geodesics, which means that test particles initially at rest do
not remain static in such a coordinate system: this universe is actually expand-
ing. It is easier to see this if we rewrite the solution in different coordinates,
global cosmological coordinates, such that the metric becomes:

4
ds®> = —dt?® + L? cosh® <L> dw? (12)

Now the curves of constant spatial coordinates are time-like geodesics (comov-
ing coordinates), but the spatial terms of the metric are changing with time,
shrinking and expanding.

In the meanwhile, astronomers were conducting measures on the radiation
coming from extra-galactic objects, most of which appeared to be redshifted.
This was strong evidence for the expansion of the universe.

1.2 Friedmann-Robertson-Walker universes

An expanding universe, would have been compatible with a de Sitter solution
and would not require a cosmological constant anymore. In fact, Einstein’s

2A perfect fluid is homogeneous and isotropic, so that it can be completely characterized
by its rest frame density p and pressure p. These symmetry hypothesis require that the
stress-energy tensor associated with a perfect fluid is diagonal in the rest frame.

3In the following discussion, sometimes, I will use abbreviations dwﬁ for the metric over
n-spheres.



equations allows for a class of solutions with time-dependent metric coefficients,
Robertson-Walker metrics:

ds® = —dt* + R*(t) dr? + r?dw? (13)

1— kr2
where we can see that the extension of the universe scales according to the cos-
mic scale factor R(r). RW metrics describe spacetimes that admit a foliation
into 3-dimensional maximally symmetric spacelike hyperspaces ¥ : the space-
time manifold can be written as M = R x X. Since ¥ is maximally symmetric,
its curvature, and thus its curvature scalar R®), will be constant everywhere.
This means that, except from a scale factor, ¥ is uniquely determined by the
normalized curvature scalar k o< R, that can be equal to 1, 0, -1 if the cur-
vature is respectively positive, null or negative. Spatially maximally symmetric
spacetimes are interesting to study as cosmological models because we expect
the universe to be isotropic (from experimental evidence) and homogeneous (by
assuming the Copernican principle) on the large scale. By inserting eq. (13) and
eq. (8) in eq. (1), we obtain that a RW metric is a solution of the field equations
if the following conditions (Friedmann equations) for the time evolution of the
scale factor hold:

R?  87G k

H?(t) RT3 P R (14)
= ) (15)

To proceed forward, we have to specify the relationship between p and p, that
is the equation of state of the perfect fluid. It is realistic to set the density
proportional to the pressure:

p=wp (16)

with |w| < 1%, The equation of state, together with the conservation of energy
equation:

V. TF =0 (17)
leads to the relation: )
p R
- =-3(1 —= 18
L= 314wy (18)
that can be integrated to obtain:
p x R—3(1+w) (19)

The energy-matter content of the universe is very diverse: the energy density p
is actually a sum of the energy density from different sources. However, we can
model it with just three different perfect Auids:

41f the source of energy is a perfect fluid, this condition is equivalent to stating that p > |p|
or p=—pA p < 0. This is known as Null Dominant Energy Condition and allows for both a
positive and negative vacuum energy density, but only if the latter is balanced by the pressure.



matter collisionless, non relativistic particles with negligible pressure. It is
characterized by par =0, war = 0, par o< R(t)73.

radiation electromagnetic radiation or ultrarelativistic particles, characterized
by pr = $pr, wr = 1/3, pg o< R(t)™*

vacuum energy also known as cosmological constant. If the vacuum has a non
0 energy density, it seems reasonable to assume that it is homogeneous,
so the associated stress-energy tensor will be proportional to the metric,
this makes it indistinguishable from the cosmological term in the field
equations®. It follows that if we represent it as a perfect fluid we get

PA = —pA, wp = —1, pp x R(0) = const.

curvature this is not actually an energy density, but we can treat the curvature

term in Friedmann’s equation as if it was, defining py = —%. It is

then characterized by w = —1/3, p < R(t)™2

If we assume that one kind of energy density dominates over the others at a
certain time, and that the spatial curvature is null, we can combine the relations
between densities and scale factor with Friedmann’s equations, to get:

R(t) < R(t)~2Gw+D) (20)

that integrated in time becomes:

2(w+1) _
R(1) x {” ifwz -1 (21)

et ifw=-1
For a vacuum dominated universe, the scale factor expands like an exponential
and the metric becomes:

ds® = —dt® + e [dz® + dy? + dz?] (22)

which is again the de Sitter space metric written in an other set of coordinates,
inflationary coordinates. It is interesting that de Sitter can be a model for a flat
(k =0), empty (ppr = pr = 0) universe whose expansion is driven by a positive
cosmological constant.

1.3 Inflation

Is a vacuum dominated universe a realistic model for our universe? From eq. (21)
we see that the scale factor grows in time for all the different kind of matter-
energy that we examined before. Interpolating this trend in the past, we can
assume that there was a time at which R = 0. Also, the energy density of
different sources scales differently with the scale factor. If we assume that
initially both matter, radiation and vacuum energy were present, as the scale

5In this text, the terms cosmological constant and vacuum energy density are interchange-
able.



factor expands, the radiation term will be the one to die out first in Friedmann’s
equation, followed by the matter term, while the vacuum term will remain
constant. We speak then about a radiation dominated era, a matter dominated
era and finally a vacuum dominated era. This is the so-called Big Bang theory,
which is successful in explaining many observations. Current experimental data
tells us that today we are around the end of a matter dominated era, so that de
Sitter space could be a large scale model for the future universe.

In addition to this, vacuum energy takes on an important role in other era
of the universe’s history. The simple Big Bang model does not provide an
explanation to the highly non generic conditions in which we find the current
universe to be: almost 0 spatial curvature and isotropy of the cosmic microwave
background radiation (CMB). Let’s start by examining the flatness problem. If
we suppose that the vacuum energy is 0, the first Friedmann equation (eq. (14))
becomes:

H(0? = 2 (pas + o) = g (23)
_ % (par0R(t) % + proR(t) 1) — kR(t)~? (24)

The curvature term decreases more slowly than the other two, so we would
expect that, at present time, the ratio between the curvature term and energy
term would be much greater than one, which is not. The second issue has to
do with a horizon problem. In the context of a universe that has been existing
for a limited amount of time, there is a maximal distance that photons may
have travelled since the Big Bang, we call it a particle horizon. In a matter or
radiation dominated universe, the physical distance between two points grows as
R(t), while the physical horizon grows faster (~ R(t)"/2, n = 3,4). Observations
show that the CMB is isotropic in areas of the sky that are outside each others’
particle horizon, which means that they were not causally connected at the time
the radiation formed.

The two problems can be solved by postulating a period of inflation, that
is a period of accelerating expansion (R(t) > 0). From the second Friedmann
equation, we see that this is possible in the case of a non 0 vacuum energy, that
drives an exponential expansion of the space. The flatness problem is solved
because, during the inflation period, the density term remains constant, while
the curvature term rapidly decreases, providing an explanation to why they
are of the same order today. At the same time, also the horizon problem is
solved, because the physical horizon size would be much bigger that the one
estimated without inflation. So an expanding, vacuum dominated universe may
have characterized a past phase of our spacetime.



2 Coordinate systems: the various appearance
of de Sitter space

Let’s now see how all the coordinates systems that we mentioned before are
actually describing the same manifold.

2.1 Cartesian coordinates

We can start by defining de Sitter space as an hyperboloid H with radius L, of
equation:
(X)) () () () = (25)

embedded in a five-dimensional Minkowsky space with metric:
ds® = — (dX°)" + (dX1)* + (dX?)* + (dX?)” + (dx*)” (26)

Eq. (25) tells us that H is the locus of points that have the same invariant
distance from the origin. So any transformation from the ten-parameter Lorentz
group in five dimension will leave H unchanged: they are automorphisms of
H. Such a transformation will also leave the metric on H, which is induced
from the 5-dimensional Minkowsky one, unchanged; therefore H is a maximally
symmetric space.
The hyperboloid H, embedded in Minkowsky space, is related to the hyper-
sphere:
(X0 + () + () + (x°) "+ (x4 = 12 (27)

embedded in Fuclidean space, by the linear and homogeneous transformation
X% — —iX9. The geodesics on the hypersphere are great circles, defined by
the intersection of the hypersphere with hyperplanes passing through the ori-
gin. The corresponding geodesics on H are, in the same way, the plane curves
defined as the intersections between the hyperboloid and hyperplanes through
the origin[5]. If we assign to X° the meaning of time coordinate, null geodesics
are defined by hyperplanes that form an angle 6 with the X° axis equal to /4,
spacelike geodesics have 6 > 7/4, timelike geodesics have § < /4. In fig. 1 a
reduced model is shown, were the coordinates X3 and X4 have been removed®.
In particular, we can interpret the reduced model as showing only the time
coordinate and one space coordinate, so that every point of the reduced H rep-
resents a 2-sphere (S?) at a certain time. This model allows us to visualize
spacelike geodesics as ellipses with the semi-minor axis laying in the X% = 0
plane, timelike geodesics as hyperbolas and null geodesics as straight lines. All
of this curves are either closed curves or extend to infinity, meaning that H is
geodesically complete”.

1 will continue to use this model to draw pictures of the different coordinate systems and
to explain concepts that will later be extended to the full model.
7This property is valid also in the extended model.



Figure 1: Reduced model for de Sitter space. The yellow ellipse is a spacelike
geodesic, the orange line is a null geodesic, while the red hyperbole is a timelike
one.

2.2 Global cosmological coordinates

Even though the X coordinates are useful to visualize geodesics and Lorentz
transformations, H is a four-dimensional manifold and it can be described by
only 4 coordinates. We can eliminate the redundant coordinate by introducing
global cosmological coordinates (t, x, 8, @) such that:

X% = Lsinh (%)
X' = Lcosh (%) cos Y
X? = Lcosh (£)sin x cosf (28)
X?® = Lcosh (£)sinysinfcos ¢
)

X4 = Lcosh( sin  sin 6 sin ¢
These expression satisfy eq. (25) and, by applying the change of coordinates to
the metric in eq. (26), we obtain the metric:

t
ds® = —dt* + L? cosh® 7 ldx? +sin® x (467 + sin” 0d¢”) | (29)

where the term in round brackets is the metric over a two-sphere dw3 and the
term in square brackets is the metric over a three-sphere dw3. In this way we
introduce a coordinate singularity that has the same nature of the singularity of
spherical coordinates, it is not a problem we should care about because it does
not reflect a real singularity of the manifold and global cosmological coordinates
cover the whole manifold.



In this parametrization of the hyperboloid, time runs from —oo to +o0o and
sections of constant time coordinate are 3-spheres with a time dependent radius
that initially shrinks from an infinite value and then re-expands to infinity. If
we consider only the half of the manifold with ¢t > 0, the model describes an
expanding universe. For:

te(—oo,+0) , 6€l0,2n] , x,¢€]0,7] (30)

the coordinates cover the whole manifold, therefore the topology of H is R x S3,
where S2 is the three-sphere, meaning that the de Sitter space is conformal to a
part of Einstein’s static universe®. Fig. 2 shows curves of constant coordinates

.

Figure 2: Curves of constant coordinates in the global cosmological system,
reduced model.

for the reduced model. From the picture is it easy to see that curves of con-
stant spatial coordinates are timelike geodesics, which means that if we put test
particles at rest in these coordinates, they will remain at rest in the coordinate
system and follow the expansion of the space. A coordinate system with this
property is called comoving.

This representation, however, highlights an unpleasant feature of the global
cosmological coordinates. The sections of constant time, that should represent
the space at time ¢, are 1-spheres (in the reduced model), but only the one with
t = 0 is a geodesics, while the others are not. Lorentz transformations of the
space of simultaneity ¢ = 0 cannot transform it in one of the other spaces of
simultaneity and vice versa. This means that there is an essential inequivalence
between spaces at constant time.

8 A conformal transformation is one on the form ds'? = w?(x)ds? with w # 0 V points z. It
consist in nothing more than a local change of scale.

10



2.3 Static coordinates

So we would like to develop a coordinate system in which spaces of constant
time are built from families of geodesic curves. In section 2.1 we explained what
spacelike geodesics look like in the reduced model. We can consider the family

Figure 3: Family of ellipses that are sections of constant time in the reduced
model.

of ellipses €; shown in fig. 3 and identify each space of constant ¢ with a function
of the inclination of the plane that defines the geodesic section. For example it

is useful to choose:
Ty X 0

() - 22 -

to define the time coordinate T. Then eq. (25) is satisfied by choosing so-called
static coordinates (T, x, 8, ¢) such that:

XY :Lcosxsinh( )
X' = Lcosxcosh (T)
X? = Lsinxcosf (32)
X3 = Lsinysinfcos¢
X* = Lsinysinfsin¢

SIEIgls]

and the metric becomes:

ds® = —cos® xdT? + L?dx* + L?sin® x (d6? + sin® 0 d¢?) (33)

11



(it is the same as eq. (11) if we identify: r/L — sin x, t — T'). The characteristic
feature of the static coordinates is that they show time independent metric
coefficients. This seems to suggest that de Sitter space can be a model for a static
universe. We should note however that curves of constant spatial coordinates
now are not geodesics (except the one for x =0, § =0, ¢ = 0), so test particles
put initially at rest, will soon appear to be moving in the coordinate reference
frame. Furthermore, with such a choice of coordinates, a singularity arises (due
only to coordinates, not to a real feature of the manifold): on the two-spheres
determined by X° = 0 and X! = 0, the time becomes indeterminate, because
all spaces of simultaneity meet (we see this also from the first of eq. (32) when
X% =0and xy = £n/2). This two-dimensional surface is called bifurcate horizon
and it separates the parts of H in which |x| > 7 /2, from those where |x| < 7/2.

A second problem is that, even if we let T' range over all R and x run from
—7 to +m, the static coordinates will not cover the whole manifold, but only the
two saddle shaped regions in fig. 4 (or just one if we set the limitation |x| < 7/2)
that are determined by the condition:

()" + () + (x) < 2 (34)
together with eq. (25). The boundary of this region consist of the null three-

Figure 4: Saddle shaped regions covered by static coordinates.

dimensional surface drawn by light rays spreading in the future or in the past
from the points of the bifurcate horizon.

Since timelike geodesics have an ascent steeper than /4, there are many of
them that have only a finite section inside the saddle region, while other reach
past or future infinity inside the region, but exit or enter it at a finite eigen-
time. Referring to the reduced model, only one timelike geodesic is completely

12



contained in the region: the one for R = 0, which is the only observer in these
coordinates that is both static and sitting on a geodesic. From the point of view
of the static frame, particles that exit the saddle regions are seen as approaching
the mass horizon indefinitely, reaching it only for ¢ — oco. At first this sound
like a paradox, because the mass horizon is connected to every point inside the
region by a spacelike geodesic, however, as the particle is approaching the null
surface of the boundary, its invariant distance from the mass horizon, though
being spacelike, tends to 0.
Curves of constant coordinates are shown in fig. 5.

Figure 5: Curves of constant coordinates in the static system, reduced model.

2.4 Inflationary coordinates

Both in the global cosmological and in the static coordinates the spaces of simul-
taneity, which are the sections of H with constant time, are bounded regions for
each value of the time coordinate. Now, we turn to a coordinate system, named
inflationary coordinates, in which the spaces of simultaneity are unbounded. For
simplicity, I will first develop the coordinates in the reduced model and then
extend them to the full one.

We define as spaces of simultaneity the spacelike sections cut in H by a
sheaf of parallel planes with an inclination of 7/4 with respect to X°. This
correspond to a family of parabolas, for example those parallel to the X? axis,
each of which is identified by a different constant value:

X9+ X! = const. (35)

13



The time parameter will then be of the form:
t=f(X"+Xx") (36)

We look for a spatial coordinate that is perpendicular to the time one. On H,
an infinitesimal displacement with the condition ¢ = const. is given by differen-
tiating eq. (25) and eq. (35):
dX° +dX' =0
17yl 2 7y2 (37)
—X%X%+ X1dX!' + X?dX? =0
from which follows:
dX?:dXx':dX" = (X" + X' x?:. -x? (38)
A direction (6X°,6X! §X?) Minkowsky orthogonal to (dX°,dX*' dX?) must
satisfy the condition:
— (X" + XN 6X? + X?0X' + X?6X° =0 (39)
S(X°+ X% X2

X0+ x2 X2 (40)
X2
m = const. (41)

So we choose the spatial coordinate:

X2
r=g (XO n X1> (42)
Now we extend the result to the full model and choose the functions f and g:
X0+ x?t
t = Llog g+)

= L—ix

XOXT (43)
y=Lxsixr
y = LX74
= Lxoxt

We used a logarithmic function for the time coordinate, so to push away to
t — oo the degenerate space of simultaneity at X° + X' = 0 that consist of two
parallel hyperplanes, instead of a spacelike paraboloid. In this way, though, we
cannot cover the whole manifold, but only the half of the points of H for which
X9+ X1 > 0. In fig. 6 we can see curves of constant coordinate for the reduced
model.

This time, the spatial coordinates x,y, z are not bounded, but range from
—00 to 400, in particular, for t — —oo, also x, y, z — o0o. The inverse coordinate
transformation is:

X1 4 X0 =Let

X1 X0 = [ef — 2w f

X? = zet (44)
X3 = yel

X4 = zeT

14
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Figure 6: Curves of constant coordinates in the inflationary system, reduced
model.

from which we can calculate the metric:
ds? = —dt? + 2T [da? + dy* + dz?] (45)

The expression inside the square brackets is the metric over a flat Euclidean
space, with the topology of R3, while the coefficient et grows exponentially
with time, meaning that the space, which is already unbounded, is also expand-
ing. An interesting feature of this system is that the planes ﬁlxl = const., i =
2,3,4 that cut on H the curves of constant spatial coordinates, contain the ori-
gin, so these curves are geodesics. This means that test particles initially at
rest, will remain at rest respect to the spatial coordinates, even though their re-
spective distances will grow exponentially. Particles that move along a geodesic,
but are not at rest in this coordinate system, will asymptotically approach a
meridian hyperbola (curves of constant spatial coordinates in the global cosmo-
logical frame) which means that its coordinate velocity will tend asymptotically
to 0, no matter what the initial value was, even if it was c.

2.5 Conformal coordinates

The last coordinate system to which we turn is just a reparametrization of the
global cosmological coordinates. Actually, the spatial conformal coordinates are
exactly the same as the the global ones. The relationship between the conformal

15



time coordinate T and the cosmological time ¢ is:

t 1
h|{—)= 46
o8 (L> cosT (46)
with: -
Te (——, —) 47
55 (47)
so that the conformal coordinates are:
X% =LtanT
X' = LCOiT COS X
X? =L_l-sinycosd (48)
X3 = LCOiT sin y sin 6 cos ¢
X4 = Lﬁ sin x sin # sin ¢

The usefulness of the transformation is that the domain of time becomes bounded.
We can use this coordinate system, for example, to draw Penrose diagrams of
de Sitter space, in which we can visualize the whole space (actually, inevitably
just a two or three-dimensional section) in a finite portion of the plane.

Figure 7: Curves of constant coordinates in the conformal system, reduced
model.

Differentiating both sides of eq. (46) we get:
s
cos2T cos2T

1t in T in T
—sinh —dt = S 97 = dt = Lo sinh ! (-) T (49)

16



Now we can calculate the metric starting from eq. (29):

2

ds® =
cos2T

[—dT? + (dx* + sin® x (d6? + sin® 0d¢?)) ] (50)

that is the same as Einstein’s static universe metric up to the multiplicative
factor L?/cos? T. In fig. 7 we see curves of constant coordinates.

3 Causal structure: de Sitter on a small square

3.1 Penrose diagrams

To study infinity of spacetimes one uses, after Penrose, conformal techniques,
which also provide a simple way to represent curved spacetimes, at least in two
dimensions. This means that we need to find an appropriate coordinate system
that satisfies the following requirements:

e it must include a timelike coordinate and a spatial one;

e light rays in the direction of the space coordinate shown are represented
by 45° lines in every point of the diagram;

e timelike, spacelike and null infinity are located at finite values of the co-
ordinates, so the whole manifold can be represented in a limited diagram.

Spacetime diagrams of this kind are called conformal diagrams or Penrose dia-
grams.

In order to build one for de Sitter space, we can start by considering the
representation of the space in conformal coordinates:

L2 . .
where T
Te (—574‘5) ; x €10,7] (52)

Light rays in the direction 0y, are characterized by ds?> =0and df = do = 0, so
their coordinate velocity is:

dx

dT
Conformal coordinates satisfy all the requirements. The topology of the space
now is (—g, —&—g) x 53, so a possible way to visualize it is to represent it as a
section of height 7 of a cylinder of unitary radius (see fig. 8),where each point
of the surface represents a two-sphere. If we unroll this area, we obtain the
conformal spacetime diagram for de Sitter space (fig. 9) where y =0 and xy =7
are identified. In this representation we keep only time and radial coordinates
(T, x), with a reduced metric:

1 (53)

L2
cos2 T

ds® = [—dT? + dx?] (54)

17



T=-n/2

Figure 8: Representation of de Sitter space as a patch on Einstein’s static
universe space.

In fig. 10, instead, the conformal diagram of the portion of de Sitter that is cov-
ered by static coordinates is shown. It appears evident here that the singularity
on the border is only due to the choice of coordinates.

3.2 Causal structure

One of the main reason we draw Penrose diagrams is to study infinity, which
is represented by the conformal boundary. In our case, the diagram shows that
de Sitter space has both past and future timelike infinities (Z* and Z7), on
which all non spacelike curves respectively start and end. This characteristic is
different for example from Minkowsky space, where the conformal boundary is
lightlike (see fig. 11).

I will give some definitions that will result useful in the discussion about the
causal structurel®. For a given point p in the conformal diagram, we indicate
with:

chronological future (past) I*(p) the set of points that can be reached from
p with a future (past) directed timelike curve. In simple terms, it is the
interior of the null cone spreading from p.

causal future (past) J*(p) the set of points that can be reached from p with

18
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Figure 9: Penrose diagram of de Sitter space. Curves of constant conformal
coordinates are shown, along with the future-directed light cones of two points.

e¢+ 0

728

Figure 10: Penrose diagram of de Sitter space in the static frame. Curves of
constant static coordinates are shown.

a future (past) directed non spacelike curve. It is the interior and the
boundary of the null cone spreading from p.

Now we consider a family of observers that move along timelike geodesics (for
example they can be the family of curves with constant spatial coordinates in
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Figure 11: Penrose diagram of Minkowsky space. Curves of constant coordinates
are shown.

conformal or inflationary coordinates). If p is a point on the worldline of observer
O, corresponding to a value ¢ of its eigentime, we say that another observer O
has been seen by O if O’s worldline crosses O’s causal past at p (fig. 12). We
define:

particle horizon for O at p, H(O,p), the timelike surface that divides the
worldlines of observers seen by O at p, and those that have not been seen

(yet).

On the conformal diagram all the worldlines are limited in the past and in the
future by points, say ¢, and ¢f, on Z~ and Z. We define:

future event horizon of the worldline, E*(0), as the null surface that divides
the points of events ever seen by O, from those that O never sees. We can
think of it as J~(qf) — I~ (gy).

past event horizon of the worldline, E~(O), as the null surface that divides
the points of events from which is possible to see O at some time, from
those that never see O. We can think of it as J*(g,) — I (gp).

Event horizons and particles horizons are not present in all spacetimes (for
example they do not exist in Minkowsky space), but in de Sitter there are both.
Every worldline has both a past and a future event horizon, while the area
inside the particle horizon will eventually grow to cover the whole space. In
fact, we can choose two points (like in fig. 9) that have either causal futures
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Figure 12: In this Penrose diagram of de Sitter space the worldlines of a family
of observers are shown. The light cones that represent the boundary of J*(p)
are shown, as well as the particle horizon at p and future and past event horizon

of O.

or causal pasts completely disconnected. This possibility is a consequence of
the future and past infinities being spacelike. On a more physical level, we
can interpret this as due to the expansion of the universe. Spatial distances
expand at a rate faster that the speed of light, so that observers that were once
arbitrarily close, will eventually undertake causally disconnected paths (unless
they end exactly at the same point). On the other hand, at early times, in the
history of this evolving universe, the spaces of simultaneity can be divided into
spacelike patches, some of which have non overlapping causal pasts. Turning
to the conformal diagram of de Sitter in static coordinates, we see that past
infinity is null, not spacelike. This means that observers do not have a past
event horizon, but only a future one, and there is no particle horizon.

4 A solution to Einstein’s equations: some long
but necessary calculations

I am going to show now that de Sitter space is actually a solution to Einstein’s
field equations. Referring to eq. (6), I will prove by substitution that the metric
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in eq. (45), which in matrix form is given by:

1 0 0 0
0 et 0 0

=109 0 e* 0 (55)
0 0 0 et

solves the equation for 7}, = 0, A > 0 and determine the value of A. The field
equations reduces to:

R = (5 = A) s (56)

that means that I just need to prove that the Ricci tensor is proportional to
the metric. I choose to use the metric in inflationary coordinates because it is
the most easy to work with and the proof does not loose in generality because
Einstein’s equations are tensor equations, so they are coordinate independent.
Let’s start by calculating Christoffel symbols, using eq. (3). Since our metric
is diagonal, the sum over the index = reduces to only one term and becomes:

1
Lo = §9W (9p9ou + Oo9up — Ougpo) (57)

where p is now a specific coordinate (we do not sum over it). The only coordinate
dependence in the metric is the one on ¢ and the time derivative is:

0 0 0 0

0 2% 0 0
atgyv ~ o 0 %e% 0 (58)

0 0 0 2%
So the only non-0 Christoffels are:
rt = _fgto 59
po = ~59 OtGpo (59)
1

Ffa = th = §gppatgap (60)

where again we do not sum over p nor ¢t. Using again the fact that the metric
is diagonal, we can reduce the non-0 Christoffels to:

1 2 2 1 2
i = —5(—1)36% = ze% (61)
A T R |
th:Fit:§€ "¢t T 1 (62)

where i stands only for the spatial indexes. The Ricci tensor can be written as:

Ry, =Rf,, =R, +R (63)

pty niv
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Let’s calculate each of the two terms on the right side, the first one is:

R, =0T}, —9,I, + T} Argu - ri;ﬁu (64)
=, —Ti, I}, (65)

1 o 1 o
= 6, [Be] — 5,400 [pe} (66)

while the second one, for the coordinate x is:

R, =08,I%, -0, %, + T4y, — T, Iy, (67)

= _aul—‘ip, + F;triu - Fitri’u - Flﬁzl—‘;u (68)

= —0ut0ut (0% + T2 T50) + 0, T3 s (69)

- 5uz5umritrtzz - 6#t5Vtrszit (70)

1 2 1 1 2 1 2
= _5ut51/t |:I/26 L 4+ L2:| — 5#9351/9; |:L2€ L :| + 5Hy |:L2€ L :| (71)
Summing up all the terms we get:
3 2 3 3 3
Ry =6 [LQe L] — 0utOut {LQ + ﬁe "] = ﬁguu (72)

So the metric satisfies Einstein’s equations. The Ricci scalar is:

3 12
R = ﬁgﬂl/guy = ﬁ (73)
hence, using eq. (56), we can calculate the cosmological constant:

6 3 3
A= I (74)

In this model, the cosmological constant is linked to the radius of the universe.

4.1 Symmetry considerations

This brute force calculation could have been made easier by using the fact that
de Sitter space is maximally symmetric. Such a space is defined by the property
of having the maximum number of independent symmetries® possible, that is:

1

§n(n +1) (75)
where n is the dimension of the space. If this is the case, the geometry of the
space will be invariant under translation-like and rotation-like transformations.
The metric must be invariant as well, implying that the curvature, which is

9By symmetry, here, we mean as isometry, which is a symmetry of the metric tensor. A
symmetry ¢ of a tensor T is a diffecomorphism such that 7" is invariant after being pulled back
under ¢.
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a scalar built from the metric and its derivatives, is constant through all the
manifold. For a given dimension and signature, up to a re-scaling, there are only
three different maximally symmetric spaces, characterized by positive, null, or
negative curvature. De Sitter space is the maximally symmetric space of positive
curvature for the case n = 4, signature (1,3).

It can be shown that, if the number of symmetries is maximal, the Riemann
tensor can be written as:

R
Rppov = ) (9poGuv — Gpv o) (76)

n(n —1

It follows that for n = 4 the Ricci tensor is:

Ry = W,LR_I)Q"" (9p0 9 = GovGuo) (77)
= 1 (65 m — 9C000) (79)
= 2% (g~ g0) (79)
= g (30)

from which its easy to show that Einstein’s vacuum field equation is satisfied.

5 Conclusions

We have seen that de Sitter space is a vacuum, maximally symmetrical, non
globally static solution to Einstein’s field equations. It describes a spacetime
with constant positive curvature and topology R x.S2, consisting of three-spheres
that contract and expand in time. We can describe it with different set of
coordinates, which cover the whole manifold or just parts of it. Depending on the
time foliation that we choose, the reduced metric on the spaces of simultaneity
changes, so that we can have either a flat, infinite space or a positively curved,
closed space.

The major importance of de Sitter spacetime in today’s cosmology is that it
corresponds to a vacuum dominated universe, which means a universe in which
the predominant form of energy is vacuum energy (or dark energy if we prefer
that interpretation). This is thought to be the future state in which our universe
will evolve, as well as an approximation of a past state in which our universe
was during the period of primordial inflation.
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